956 resultados para Local linear
Resumo:
We use Hubble Space Telescope (HST) NICMOS continuum and Paα observations to study the near-infrared and star formation properties of a representative sample of 30 local (d ~ 35-75 Mpc) luminous infrared galaxies (LIRGs, infrared [8-1000 μm] luminosities of log L_IR = 11-11.9 L_☉). The data provide spatial resolutions of 25-50 pc and cover the central ~3.3-7.1 kpc regions of these galaxies. About half of the LIRGs show compact (~1-2 kpc) Paα emission with a high surface brightness in the form of nuclear emission, rings, and minispirals. The rest of the sample show Paα emission along the disk and the spiral arms extending over scales of 3-7 kpc and larger. About half of the sample contains H II regions with Hα luminosities significantly higher than those observed in normal galaxies. There is a linear empirical relationship between the mid-IR 24 μm and hydrogen recombination (extinction-corrected Paα) luminosity for these LIRGs, and the H II regions in the central part of M51. This relation holds over more than four decades in luminosity, suggesting that the mid-IR emission is a good tracer of the star formation rate (SFR). Analogous to the widely used relation between the SFR and total IR luminosity of R. Kennicutt, we derive an empirical calibration of the SFR in terms of the monochromatic 24 μm luminosity that can be used for luminous, dusty galaxies.
Resumo:
We consider the suppression of spatiotemporal chaos in the complex GinzburgLandau equation by a combined global and local time-delay feedback. Feedback terms are implemented as a control scheme, i.e., they are proportional to the difference between the time-delayed state of the system and its current state. We perform a linear stability analysis of uniform oscillations with respect to space-dependent perturbations and compare with numerical simulations. Similarly, for the fixed-point solution that corresponds to amplitude death in the spatially extended system, a linear stability analysis with respect to space-dependent perturbations is performed and complemented by numerical simulations. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Mixtures of Zellner's g-priors have been studied extensively in linear models and have been shown to have numerous desirable properties for Bayesian variable selection and model averaging. Several extensions of g-priors to Generalized Linear Models (GLMs) have been proposed in the literature; however, the choice of prior distribution of g and resulting properties for inference have received considerably less attention. In this paper, we extend mixtures of g-priors to GLMs by assigning the truncated Compound Confluent Hypergeometric (tCCH) distribution to 1/(1+g) and illustrate how this prior distribution encompasses several special cases of mixtures of g-priors in the literature, such as the Hyper-g, truncated Gamma, Beta-prime, and the Robust prior. Under an integrated Laplace approximation to the likelihood, the posterior distribution of 1/(1+g) is in turn a tCCH distribution, and approximate marginal likelihoods are thus available analytically. We discuss the local geometric properties of the g-prior in GLMs and show that specific choices of the hyper-parameters satisfy the various desiderata for model selection proposed by Bayarri et al, such as asymptotic model selection consistency, information consistency, intrinsic consistency, and measurement invariance. We also illustrate inference using these priors and contrast them to others in the literature via simulation and real examples.
Resumo:
One of the most significant research topics in computer vision is object detection. Most of the reported object detection results localise the detected object within a bounding box, but do not explicitly label the edge contours of the object. Since object contours provide a fundamental diagnostic of object shape, some researchers have initiated work on linear contour feature representations for object detection and localisation. However, linear contour feature-based localisation is highly dependent on the performance of linear contour detection within natural images, and this can be perturbed significantly by a cluttered background. In addition, the conventional approach to achieving rotation-invariant features is to rotate the feature receptive field to align with the local dominant orientation before computing the feature representation. Grid resampling after rotation adds extra computational cost and increases the total time consumption for computing the feature descriptor. Though it is not an expensive process if using current computers, it is appreciated that if each step of the implementation is faster to compute especially when the number of local features is increasing and the application is implemented on resource limited ”smart devices”, such as mobile phones, in real-time. Motivated by the above issues, a 2D object localisation system is proposed in this thesis that matches features of edge contour points, which is an alternative method that takes advantage of the shape information for object localisation. This is inspired by edge contour points comprising the basic components of shape contours. In addition, edge point detection is usually simpler to achieve than linear edge contour detection. Therefore, the proposed localization system could avoid the need for linear contour detection and reduce the pathological disruption from the image background. Moreover, since natural images usually comprise many more edge contour points than interest points (i.e. corner points), we also propose new methods to generate rotation-invariant local feature descriptors without pre-rotating the feature receptive field to improve the computational efficiency of the whole system. In detail, the 2D object localisation system is achieved by matching edge contour points features in a constrained search area based on the initial pose-estimate produced by a prior object detection process. The local feature descriptor obtains rotation invariance by making use of rotational symmetry of the hexagonal structure. Therefore, a set of local feature descriptors is proposed based on the hierarchically hexagonal grouping structure. Ultimately, the 2D object localisation system achieves a very promising performance based on matching the proposed features of edge contour points with the mean correct labelling rate of the edge contour points 0.8654 and the mean false labelling rate 0.0314 applied on the data from Amsterdam Library of Object Images (ALOI). Furthermore, the proposed descriptors are evaluated by comparing to the state-of-the-art descriptors and achieve competitive performances in terms of pose estimate with around half-pixel pose error.
Resumo:
Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal delay terms of the integral formulation. Our analysis avoids the so-called long-wavelength approximation that has previously been used to formulate PDE models for neural activity in two spatial dimensions. Direct numerical simulations of this PDE model show instabilities of the homogeneous steady state that are in full agreement with a Turing instability analysis of the original integral model. We discuss the benefits of such a local model and its usefulness in modeling electrocortical activity. In particular we are able to treat "patchy'" connections, whereby a homogeneous and isotropic system is modulated in a spatially periodic fashion. In this case the emergence of a "lattice-directed" traveling wave predicted by a linear instability analysis is confirmed by the numerical simulation of an appropriate set of coupled PDEs. Article published and (c) American Physical Society 2007
Resumo:
This thesis is a research about the recent complex spatial changes in Namibia and Tanzania and local communities’ capacity to cope with, adapt to and transform the unpredictability engaged to these processes. I scrutinise the concept of resilience and its potential application to explaining the development of local communities in Southern Africa when facing various social, economic and environmental changes. My research is based on three distinct but overlapping research questions: what are the main spatial changes and their impact on the study areas in Namibia and Tanzania? What are the adaptation, transformation and resilience processes of the studied local communities in Namibia and Tanzania? How are innovation systems developed, and what is their impact on the resilience of the studied local communities in Namibia and Tanzania? I use four ethnographic case studies concerning environmental change, global tourism and innovation system development in Namibia and Tanzania, as well as mixed-methodological approaches, to study these issues. The results of my empirical investigation demonstrate that the spatial changes in the localities within Namibia and Tanzania are unique, loose assemblages, a result of the complex, multisided, relational and evolutional development of human and non-human elements that do not necessarily have linear causalities. Several changes co-exist and are interconnected though uncertain and unstructured and, together with the multiple stressors related to poverty, have made communities more vulnerable to different changes. The communities’ adaptation and transformation measures have been mostly reactive, based on contingency and post hoc learning. Despite various anticipation techniques, coping measures, adaptive learning and self-organisation processes occurring in the localities, the local communities are constrained by their uneven power relationships within the larger assemblages. Thus, communities’ own opportunities to increase their resilience are limited without changing the relations in these multiform entities. Therefore, larger cooperation models are needed, like an innovation system, based on the interactions of different actors to foster cooperation, which require collaboration among and input from a diverse set of stakeholders to combine different sources of knowledge, innovation and learning. Accordingly, both Namibia and Tanzania are developing an innovation system as their key policy to foster transformation towards knowledge-based societies. Finally, the development of an innovation system needs novel bottom-up approaches to increase the resilience of local communities and embed it into local communities. Therefore, innovation policies in Namibia have emphasised the role of indigenous knowledge, and Tanzania has established the Living Lab network.
Resumo:
Bupivacaine (BVC; S75-R25, NovaBupi
Resumo:
Overrecentdecades,remotesensinghasemergedasaneffectivetoolforimprov- ing agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using remote sensed images. Since the natural processes are scale dependent and most of them are hierarchically structured, the determination of optimal study scales is mandatory in understanding these processes and their interactions. The concept of multi-scale/multi- resolution inherent to OBIA methodologies allows the scale problem to be dealt with. But for that multi-scale and hierarchical segmentation algorithms are required. The question that remains unsolved is to determine the suitable scale segmentation that allows different objects and phenomena to be characterized in a single image. In this work, an adaptation of the Simple Linear Iterative Clustering (SLIC) algorithm to perform a multi-scale hierarchi- cal segmentation of satellite images is proposed. The selection of the optimal multi-scale segmentation for different regions of the image is carried out by evaluating the intra- variability and inter-heterogeneity of the regions obtained on each scale with respect to the parent-regions defined by the coarsest scale. To achieve this goal, an objective function, that combines weighted variance and the global Moran index, has been used. Two different kinds of experiment have been carried out, generating the number of regions on each scale through linear and dyadic approaches. This methodology has allowed, on the one hand, the detection of objects on different scales and, on the other hand, to represent them all in a sin- gle image. Altogether, the procedure provides the user with a better comprehension of the land cover, the objects on it and the phenomena occurring.
Resumo:
This thesis studies mobile robotic manipulators, where one or more robot manipulator arms are integrated with a mobile robotic base. The base could be a wheeled or tracked vehicle, or it might be a multi-limbed locomotor. As robots are increasingly deployed in complex and unstructured environments, the need for mobile manipulation increases. Mobile robotic assistants have the potential to revolutionize human lives in a large variety of settings including home, industrial and outdoor environments.
Mobile Manipulation is the use or study of such mobile robots as they interact with physical objects in their environment. As compared to fixed base manipulators, mobile manipulators can take advantage of the base mechanism’s added degrees of freedom in the task planning and execution process. But their use also poses new problems in the analysis and control of base system stability, and the planning of coordinated base and arm motions. For mobile manipulators to be successfully and efficiently used, a thorough understanding of their kinematics, stability, and capabilities is required. Moreover, because mobile manipulators typically possess a large number of actuators, new and efficient methods to coordinate their large numbers of degrees of freedom are needed to make them practically deployable. This thesis develops new kinematic and stability analyses of mobile manipulation, and new algorithms to efficiently plan their motions.
I first develop detailed and novel descriptions of the kinematics governing the operation of multi- limbed legged robots working in the presence of gravity, and whose limbs may also be simultaneously used for manipulation. The fundamental stance constraint that arises from simple assumptions about friction and the ground contact and feasible motions is derived. Thereafter, a local relationship between joint motions and motions of the robot abdomen and reaching limbs is developed. Baseeon these relationships, one can define and analyze local kinematic qualities including limberness, wrench resistance and local dexterity. While previous researchers have noted the similarity between multi- fingered grasping and quasi-static manipulation, this thesis makes explicit connections between these two problems.
The kinematic expressions form the basis for a local motion planning problem that that determines the joint motions to achieve several simultaneous objectives while maintaining stance stability in the presence of gravity. This problem is translated into a convex quadratic program entitled the balanced priority solution, whose existence and uniqueness properties are developed. This problem is related in spirit to the classical redundancy resoxlution and task-priority approaches. With some simple modifications, this local planning and optimization problem can be extended to handle a large variety of goals and constraints that arise in mobile-manipulation. This local planning problem applies readily to other mobile bases including wheeled and articulated bases. This thesis describes the use of the local planning techniques to generate global plans, as well as for use within a feedback loop. The work in this thesis is motivated in part by many practical tasks involving the Surrogate and RoboSimian robots at NASA/JPL, and a large number of examples involving the two robots, both real and simulated, are provided.
Finally, this thesis provides an analysis of simultaneous force and motion control for multi- limbed legged robots. Starting with a classical linear stiffness relationship, an analysis of this problem for multiple point contacts is described. The local velocity planning problem is extended to include generation of forces, as well as to maintain stability using force-feedback. This thesis also provides a concise, novel definition of static stability, and proves some conditions under which it is satisfied.
Resumo:
Distribution models are used increasingly for species conservation assessments over extensive areas, but the spatial resolution of the modeled data and, consequently, of the predictions generated directly from these models are usually too coarse for local conservation applications. Comprehensive distribution data at finer spatial resolution, however, require a level of sampling that is impractical for most species and regions. Models can be downscaled to predict distribution at finer resolutions, but this increases uncertainty because the predictive ability of models is not necessarily consistent beyond their original scale. We analyzed the performance of downscaled, previously published models of environmental favorability (a generalized linear modeling technique) for a restricted endemic insectivore, the Iberian desman (Galemys pyrenaicus), and a more widespread carnivore, the Eurasian otter ( Lutra lutra), in the Iberian Peninsula. The models, built from presence–absence data at 10 × 10 km resolution, were extrapolated to a resolution 100 times finer (1 × 1 km). We compared downscaled predictions of environmental quality for the two species with published data on local observations and on important conservation sites proposed by experts. Predictions were significantly related to observed presence or absence of species and to expert selection of sampling sites and important conservation sites. Our results suggest the potential usefulness of downscaled projections of environmental quality as a proxy for expensive and time-consuming field studies when the field studies are not feasible. This method may be valid for other similar species if coarse-resolution distribution data are available to define high-quality areas at a scale that is practical for the application of concrete conservation measures