899 resultados para Load-cycle analysis
Resumo:
Sustainable development is about making societal investments. These investments should be in synchronization with the natural environment, trends of social development, as well as organisational and local economies over a long time span. Traditionally in the eyes of clients, project development will need to produce the required profit margins, with some degrees of consideration for other impacts. This is being changed as all citizens of our society are becoming more aware of concepts and challenges such as the climate change, greenhouse footprints, and social dimensions of sustainability, and will in turn demand answers to these issues in built facilities. A large number of R&D projects have focused on the technical advancement and environmental assessment of products and built facilities. It is equally important address the cost/benefit issue, as developers in the world would not want to loose money by investing in built assets. For infrastructure projects, due to its significant cost of development and lengthy delivery time, presenting the full money story of going green is of vital importance. Traditional views of life-cycle costing tend to focus on the pure economics of a construction project. Sustainability concepts are not broadly integrated with the current LCCA in the construction sector. To rectify this problem, this paper reports on the progress to date of developing and extending contemporary LCCA models in the evaluation of road infrastructure sustainability. The suggested new model development is based on sustainability indicators identified through previous research, and incorporating industry verified cost elements of sustainability measures. The on-going project aims to design and a working model for sustainability life-cycle costing analysis for this type of infrastructure projects.
Resumo:
With increasing pressure to provide environmentally responsible infrastructure products and services, stakeholders are putting significant foci on the early identification of financial viability and outcome of infrastructure projects. Traditionally, there has been an imbalance between sustainable measures and project budget. On one hand, the industry tends to employ the first-cost mentality and approach to developing infrastructure projects. On the other, environmental experts and technology innovators often push for the ultimately green products and systems without much of a concern for cost. This situation is being quickly changed as the industry is under pressure to continue to return profit, while better adapting to current and emerging global issues of sustainability. For the infrastructure sector to contribute to sustainable development, it will need to increase value and efficiency. Thus, there is a great need for tools that will enable decision makers evaluate competing initiatives and identify the most sustainable approaches to procuring infrastructure projects. In order to ensure that these objectives are achieved, the concept of life-cycle costing analysis (LCCA) will play significant roles in the economics of an infrastructure project. Recently, a few research initiatives have applied the LCCA models for road infrastructure that focused on the traditional economics of a project. There is little coverage of life-cycle costing as a method to evaluate the criteria and assess the economic implications of pursuing sustainability in road infrastructure projects. To rectify this problem, this paper reviews the theoretical basis of previous LCCA models before discussing their inability to determinate the sustainability indicators in road infrastructure project. It then introduces an on-going research aimed at developing a new model to integrate the various new cost elements based on the sustainability indicators with the traditional and proven LCCA approach. It is expected that the research will generate a working model for sustainability based life-cycle cost analysis.
Resumo:
Non-driving related cognitive load and variations of emotional state may impact a driver’s capability to control a vehicle and introduces driving errors. Availability of reliable cognitive load and emotion detection in drivers would benefit the design of active safety systems and other intelligent in-vehicle interfaces. In this study, speech produced by 68 subjects while driving in urban areas is analyzed. A particular focus is on speech production differences in two secondary cognitive tasks, interactions with a co-driver and calls to automated spoken dialog systems (SDS), and two emotional states during the SDS interactions - neutral/negative. A number of speech parameters are found to vary across the cognitive/emotion classes. Suitability of selected cepstral- and production-based features for automatic cognitive task/emotion classification is investigated. A fusion of GMM/SVM classifiers yields an accuracy of 94.3% in cognitive task and 81.3% in emotion classification.
Resumo:
Spectrum sensing is considered to be one of the most important tasks in cognitive radio. Many sensing detectors have been proposed in the literature, with the common assumption that the primary user is either fully present or completely absent within the window of observation. In reality, there are scenarios where the primary user signal only occupies a fraction of the observed window. This paper aims to analyse the effect of the primary user duty cycle on spectrum sensing performance through the analysis of a few common detectors. Simulations show that the probability of detection degrades severely with reduced duty cycle regardless of the detection method. Furthermore we show that reducing the duty cycle has a greater degradation on performance than lowering the signal strength.
Resumo:
Sustainability has been increasingly recognised as an integral part of highway infrastructure development. In practice however, the fact that financial return is still a project’s top priority for many, environmental aspects tend to be overlooked or considered as a burden, as they add to project costs. Sustainability and its implications have a far-reaching effect on each project over time. Therefore, with highway infrastructure’s long-term life span and huge capital demand, the consideration of environmental cost/ benefit issues is more crucial in life-cycle cost analysis (LCCA). To date, there is little in existing literature studies on viable estimation methods for environmental costs. This situation presents the potential for focused studies on environmental costs and issues in the context of life-cycle cost analysis. This paper discusses a research project which aims to integrate the environmental cost elements and issues into a conceptual framework for life cycle costing analysis for highway projects. Cost elements and issues concerning the environment were first identified through literature. Through questionnaires, these environmental cost elements will be validated by practitioners before their consolidation into the extension of existing and worked models of life-cycle costing analysis (LCCA). A holistic decision support framework is being developed to assist highway infrastructure stakeholders to evaluate their investment decision. This will generate financial returns while maximising environmental benefits and sustainability outcome.
Resumo:
This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of these techniques are relevant to engine design (performance and noise), energy conservation (fuel consumption) and alternative fuel evaluation. The use of Bayesian statistics, over traditional techniques, allowed for a more in-depth investigation into previously difficult to isolate engine parameters on a cycle-by-cycle basis. Specifically, these techniques facilitated the determination of the start of pre-mixed and diffusion combustion and for the in-cylinder temperature profile to be resolved on individual consecutive engine cycles. Dr Bodisco further showed the utility of the Bayesian analysis techniques by applying them to in-cylinder pressure signals taken from a compression ignition engine run with fumigated ethanol.
Resumo:
Background: The randomised phase 3 First-Line Erbitux in Lung Cancer (FLEX) study showed that the addition of cetuximab to cisplatin and vinorelbine significantly improved overall survival compared with chemotherapy alone in the first-line treatment of advanced non-small-cell lung cancer (NSCLC). The main cetuximab-related side-effect was acne-like rash. Here, we assessed the association of this acne-like rash with clinical benefit. Methods: We did a subgroup analysis of patients in the FLEX study, which enrolled patients with advanced NSCLC whose tumours expressed epidermal growth factor receptor. Our landmark analysis assessed if the development of acne-like rash in the first 21 days of treatment (first-cycle rash) was associated with clinical outcome, on the basis of patients in the intention-to-treat population alive on day 21. The FLEX study is registered with ClinicalTrials.gov, number NCT00148798. Findings: 518 patients in the chemotherapy plus cetuximab group-290 of whom had first-cycle rash-and 540 patients in the chemotherapy alone group were alive on day 21. Patients in the chemotherapy plus cetuximab group with first-cycle rash had significantly prolonged overall survival compared with patients in the same treatment group without first-cycle rash (median 15·0 months [95% CI 12·8-16·4] vs 8·8 months [7·6-11·1]; hazard ratio [HR] 0·631 [0·515-0·774]; p<0·0001). Corresponding significant associations were also noted for progression-free survival (median 5·4 months [5·2-5·7] vs 4·3 months [4·1-5·3]; HR 0·741 [0·607-0·905]; p=0·0031) and response (rate 44·8% [39·0-50·8] vs 32·0% [26·0-38·5]; odds ratio 1·703 [1·186-2·448]; p=0·0039). Overall survival for patients without first-cycle rash was similar to that of patients that received chemotherapy alone (median 8·8 months [7·6-11·1] vs 10·3 months [9·6-11·3]; HR 1·085 [0·910-1·293]; p=0·36). The significant overall survival benefit for patients with first-cycle rash versus without was seen in all histology subgroups: adenocarcinoma (median 16·9 months, [14·1-20·6] vs 9·3 months [7·7-13·2]; HR 0·614 [0·453-0·832]; p=0·0015), squamous-cell carcinoma (median 13·2 months [10·6-16·0] vs 8·1 months [6·7-12·6]; HR 0·659 [0·472-0·921]; p=0·014), and carcinomas of other histology (median 12·6 months [9·2-16·4] vs 6·9 months [5·2-11·0]; HR 0·616 [0·392-0·966]; p=0·033). Interpretation: First-cycle rash was associated with a better outcome in patients with advanced NSCLC who received cisplatin and vinorelbine plus cetuximab as a first-line treatment. First-cycle rash might be a surrogate clinical marker that could be used to tailor cetuximab treatment for advanced NSCLC to those patients who would be most likely to derive a significant benefit. Funding: Merck KGaA. © 2011 Elsevier Ltd.
Resumo:
This paper provides details on comparative testing of axle-to-chassis forces of two heavy vehicles (HVs) based on an experimental programme carried out in 2007. Dynamic forces at the air springs were measured against speed and roughness values for the test roads used. One goal of that programme was to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents a portion of the methodology, analysis and results from that programme. Two analytical techniques and their results are presented. The first uses correlation coefficients of the forces between air springs and the second is a student’s t-test. These were used to determine the causality surrounding improved dynamic load sharing between heavy vehicle air springs with larger air lines installed longitudinally compared with the standard sized air lines installed on the majority of air-sprung heavy vehicles.
Resumo:
Background: Diabetic peripheral neuropathy is an important cause of foot ulceration and limb loss. This systematic review and meta-analysis investigated the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and dynamic plantar pressures. Methods: Electronic databases were searched systematically for articles reporting the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and plantar pressures. Searches were restricted to articles published between January 2000 and April 2012. Outcome measures assessed included spatiotemporal parameters, lower limb kinematics, kinetics, muscle activation and plantar pressure. Meta-analyses were carried out on all outcome measures reported by ≥3 studies. Findings: Sixteen studies were included consisting of 382 neuropathy participants, 216 diabetes controls without neuropathy and 207 healthy controls. Meta-analysis was performed on 11 gait variables. A high level of heterogeneity was noted between studies. Meta-analysis results suggested a longer stance time and moderately higher plantar pressures in diabetic peripheral neuropathy patients at the rearfoot, midfoot and forefoot compared to controls. Systematic review of studies suggested potential differences in the biomechanical characteristics (kinematics, kinetics, EMG) of diabetic neuropathy patients. However these findings were inconsistent and limited by small sample sizes.; Interpretation: Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies. Interpretation: Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies.
Resumo:
The problem of modal choice between rail and air arises as public awareness of carbon dioxide (CO2) emissions by the transportation sector rises. In this paper, we answer this question quantitatively by performing an efficiency benchmarking analysis that takes into account life-cycle CO2 emission due to transport service provision. The paper employs nonparametric efficiency estimation methods, namely a slacks-based inefficiency measure, as well as a more conventional directional distance function approach. We apply them to a panel data set for three major railway companies and the aviation sector in Japan for the period from 1999 to 2007. Results shows that, contrary to the common argument, air transport can still be more socially efficient than rail transport, even when the environmental load due to CO2 emission is incorporated. This is due to the aviation sector's extremely low user cost, measured in terms of in-vehicle time. In other words, aviation is a necessary transportation mode for those with a very high willingness to pay for their time.
Resumo:
Introduction- This study investigates the prevailing status of Nepalese media portrayal of natural disasters. It is contributing to the development of a disaster management model to improve the effectiveness and efficiency of news production throughout the continuum of prevention, preparedness, response and recovery (PPRR) phases of disaster management. Theoretical framework- Studies of media content often rely on framing as the theoretical underpinning of the study, as it describes how the press crafts the message. However there are additional theoretical perspectives that underline an understanding of the role of the media. This article outlines a conceptual understanding of the role of the media in modern society, the way that this conceptual understanding is used in the crafting of media messages and how those theoretical considerations are applied to the concepts that underpin effective disaster management. (R.M. Entman, 2003; Liu, 2007; Meng & Berger, 2008). Methodology- A qualitative descriptive design is used to analyse the disaster news of Nepal Television (NTV). However, this paper presents the preliminary findings of Nepal Television (a government owned Television station) using qualitative content analysis of 105 natural disaster related news scripts (June 2012-March 2013) based on the framing theory and PPRR cycle. Results- The preliminary results indicate that the media focus while framing natural disasters is dominated by human interest frame followed by responsibility frame. News about response phase was found to be most prominent in terms of PPRR cycle. Limited disaster reporting by NTV has impacted the national disaster management programs and strategies. The findings describe natural disasters are being reported within the limited understanding of the important principles of disaster management and PPRR cycle. Conclusion- This paper describes the current status of the coverage of natural disasters by Nepal Television to identify the frames used in the news content. It contributes to determining the characteristics of effective media reporting of natural disasters in the government owned media outlets, and also leads to including communities and agencies involved in disasters. It suggests the frames which are best suited for news making and how media responds to the different phases of the disaster cycle.
Resumo:
This paper investigates stochastic analysis of transit segment hourly passenger load factor variation for transit capacity and quality of service (QoS) analysis using Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia. It compares stochastic analysis to traditional peak hour factor (PHF) analysis to gain further insight into variability of transit route segments’ passenger loading during a study hour. It demonstrates that hourly design load factor is a useful method of modeling a route segment’s capacity and QoS time history across the study weekday. This analysis method is readily adaptable to different passenger load standards by adjusting design percentile, reflecting either a more relaxed or more stringent condition. This paper also considers hourly coefficient of variation of load factor as a capacity and QoS assessment measure, in particular through its relationships with hourly average and design load factors. Smaller value reflects uniform passenger loading, which is generally indicative of well dispersed passenger boarding demands and good schedule maintenance. Conversely, higher value may be indicative of pulsed or uneven passenger boarding demands, poor schedule maintenance, and/or bus bunching. An assessment table based on hourly coefficient of variation of load factor is developed and applied to this case study. Inferences are drawn for a selection of study hours across the weekday studied.
Resumo:
This study uses weekday Automatic Fare Collection (AFC) data on a premium bus line in Brisbane, Australia •Stochastic analysis is compared to peak hour factor (PHF) analysis for insight into passenger loading variability •Hourly design load factor (e.g. 88th percentile) is found to be a useful method of modeling a segment’s passenger demand time-history across a study weekday, for capacity and QoS assessment •Hourly coefficient of variation of load factor is found to be a useful QoS and operational assessment measure, particularly through its relationship with hourly average load factor, and with design load factor •An assessment table based on hourly coefficient of variation of load factor is developed from the case study