845 resultados para Load bearing system
Resumo:
Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness.
Resumo:
A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water content, similar to that of native tissue. However, these hydrogel scaffolds lack the fibrous structure that functions as a load-bearing component in the native tissue, resulting in poor mechanical performance. This work shows that mechanical properties of compliant hydrogels can be substantially enhanced with electrospun nanofiber reinforcement. Electrospun gelatin nanofibers were infiltrated with alginate hydrogels, yielding transparent fiber-reinforced hydrogels. Without prior crosslinking, electrospun gelatin nanofibers improved the tensile elastic modulus of the hydrogels from 78±19 kPa to 450±100 kPa. Stiffer hydrogels, with elastic modulus of 820±210 kPa, were obtained by crosslinking the gelatin fibers with carbodiimide hydrochloride in ethanol before the infiltration process, but at the expense of transparency. The developed fiber-reinforced hydrogels show great promise as mechanically robust scaffolds for corneal tissue engineering applications.
Resumo:
A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water content, similar to that of native tissue. However, these hydrogel scaffolds lack the fibrous structure that functions as a load-bearing component in the native tissue, resulting in poor mechanical performance. This work shows that mechanical properties of compliant hydrogels can be substantially enhanced with electrospun nanofiber reinforcement. Electrospun gelatin nanofibers were infiltrated with alginate hydrogels, yielding transparent fiber-reinforced hydrogels. Without prior crosslinking, electrospun gelatin nanofibers improved the tensile elastic modulus of the hydrogels from 78±19. kPa to 450±100. kPa. Stiffer hydrogels, with elastic modulus of 820±210. kPa, were obtained by crosslinking the gelatin fibers with carbodiimide hydrochloride in ethanol before the infiltration process, but at the expense of transparency. The developed fiber-reinforced hydrogels show great promise as mechanically robust scaffolds for corneal tissue engineering applications. © 2013 Elsevier Ltd.
Resumo:
Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A severe shortage of donor cornea is now an international crisis in public health. Substitutes for donor tissue need to be developed to meet the increasing demand for corneal transplantation. Current attempts in designing scaffolds for corneal tissue regeneration involve utilization of expensive materials. Yet, these corneal scaffolds still lack the highly-organized fibrous structure that functions as a load-bearing component in the native tissue. This work shows that transparent nanofiber-reinforced hydrogels could be developed from cheap, non-immunogenic and readily available natural polymers to mimic the cornea's microstructure. Electrospinning was employed to produce gelatin nanofibers, which were then infiltrated with alginate hydrogels. Introducing electrospun nanofibers into hydrogels improved their mechanical properties by nearly one order of magnitude, yielding mechanically robust composites. Such nanofiber-reinforced hydrogels could serve as alternatives to donor tissue for corneal transplantation.
Resumo:
We demonstrate autonomous construction of structures using a robot arm that can fabricate threads of TPA (Thermoplastic Adhesive) in free space on the fly. TPA has many important material properties that help to greatly simplify the otherwise complex task of building structures in complex environments. We present a model for the formation of TPA strings based on plastic deformation which also includes the temperature dependent material properties which change significantly as the thread is formed and cools. Experiments of drawing TPA show that drawing forces due to the viscosity of the TPA are more dominated by the speed of drawing than the changes in viscosity due to temperature. The load bearing capacity of individual strings is also modelled and measured and structures are built using the TPA strings which due to the adhesiveness can be anchored to a wide range surfaces as well as to other strings. © 2013 IEEE.
Resumo:
重载作用下,类金刚石(DLC)薄膜直接应用于铝合金等软金属基体上易发生脆性破裂和剥离而导致过早失效.针对这一问题,以PEO陶瓷层作为承载层,采用有限元数值计算方法,对复合涂层在均布接触载荷作用下的应力场进行研究.结果表明:陶瓷层可明显降低DLC膜的表面拉应力和界面剪应力,起到了良好的载荷支撑作用;陶瓷层厚度对涂层表面拉应力,界面及基体内剪应力的分布有显著影响,其中陶瓷层厚度与接触半宽比为0.150.30时,涂层可以获得较为合理的表面和界面应力场,从而改善DLC膜在铝合金基体上的摩擦磨损性能
Resumo:
一体化反应器由于投资少、占地小、管理运行方便等优点而备受青睐。但现有的一体化反应器大都适用于处理中低浓度废水,耐受负荷普遍偏低。本课题研制出新型高效的厌氧好氧一体化生物反应器,旨在通过反应器结构优化、高效微生物载体研制、配合高效微生物菌剂技术处理中高浓度有机废水,实现高效和低耗,降低设备造价,提高反应器运行稳定性。 首先开展了菌剂对废水的适配试验。采用15种不同的微生物菌剂,以葡萄糖配水、中药提取废水、啤酒废水、氨氮配水为基质,分别测定了微生物菌剂的耗氧速率和厌氧比产甲烷速率,以其为指标比较了各菌剂对废水的适配性。根据结果选择活性高的14#、8#、10#菌剂,在试验室进行了菌剂对废水的连续处理试验,取得良好的处理效果,为菌剂在厌氧好氧一体化生物反应器的小试、中试中的应用奠定了基础。 经小试研究后,又对厌氧好氧一体化生物反应器进行了处理发酵废水的中试研究。试验结果表明,反应器启动快,系统有机负荷2.72 kgCODm-3d-1时整个反应器去除率保持在84.5%~93.19%,在30多天内一次启动成功。冲击负荷试验中,系统总有机负荷最高可达到8.88 kgCODm-3d-1,系统去除率稳定在88.10%~96.88%,说明反应器处理效率高,抗冲击能力强。稳定运行期间,COD去除率可达90%以上,各项指标都能达到国家排放标准。 此外,对反应器配套系统高效菌剂、高分子复合颗粒载体进行了研究。结果显示,菌剂与反应器适配良好,各功能区形成了丰富、高活性的微生物,厌氧区颗粒污泥TS高达83.9 gL-1,VS/TS为56.9%~57.4%,比产甲烷活性为280~350 mLCH4 gvss-1d-1;好氧区固定化微生物TS高达1.921 gL-1,VS/TS为94.02~94.30%。对载体性能的研究表明,此高分子复合颗粒载体密度适中,易于流化,不易流失;粗糙多空,易于挂膜;且无生物毒害作用,稳定安全,是一种优良的生物载体。反应器各功能区对废水的降解过程分析,说明了反应器、菌剂、载体适配良好,在其协同作用下,实现了污染物的高效降解。 The integrated reactors were popular because of their characteristics such as little investment, small occupation of land, convenient of manage and running etc. But the present integrated reactors were mostly applied for treating wastewater of low concentration, the load tolerance was generally on the low side. A new type integrated anaerobic-aerobic bio-reactor was developed, which was conducted to treating organic wastewater of middle or high concentration by optimization of reactor structure, development of efficient microbe carrier and adaptation of high active microbial blends, to achieve high efficiency and low consume, reduce equipment cost, enhance running stabilization of reactor. The adaptability test of microbial blends on different wastewater was carried on firstly. Oxygen consumption rate and anaerobic specific activity of methane producing of 15 different microbial blends were measured separately taking glucose artificial wastewater, Chinese herb extracting wastewater, brewery wastewater and ammonia nitrogen artificial wastewater as substrate, by which the adaptabilities of different microbial blends to wastewater were compared. According to the results high active microbial blends 14#, 8# and 10# were selected and used in the continuous treatment of wastewater in the laboratory and had obtained good effect, which had laid a foundation for application microbial blends to small scale test and pilot test of integrated anaerobic-aerobic bio-reactor. After the small scale test, the pilot test of the integrated anaerobic-aerobic bio-reactor treating fermentation wastewater was carried on. The test results showed fast initiation of the reactor. When system organic load reached 2.72 kgCODm-3d-1the COD removal rate of the reactor was stable between 84.5%~93.19% and it initiated successfully in more than 30 days at a time. In the load shock test the maximum organic load of system could reach to 8.88 kgCODm-3d-1 and the COD removal rate could be stable between 88.10%~96.88% which indicated that the reactor was efficient for treating wastewater and had strong resistance to shock load. At stable running period the COD removal rate of the reactor was over 90% and each index of wastewater could reach to the national discharge standards. In addition, the high active microbial blends and the macromolecule compound granule carrier, the matching system of the reactor was studied. It showed that the microbial blends adapted well to the reactor and abundant and high active microbes were formed in each functional field. The TS of granule sludge in anaerobic field was as high as 83.9 gL-1, the VS/TS was 56.9%~57.4%, the specific activity of methane producing was 280~350 mLCH4 gvss-1d-1. And the TS of immobilized biological granule was as high as 1.921 gL-1, the VS/TS was 94.02%~94.30%. Study on the carrier showed that the self-made macromolecular compound granule carrier was moderate of density, easy of fluidization, unease of running off, rough and porous, easy of films fixation, no bio-toxic, stable and safe, was a kind of superior carrier. Analysis of degradation process in each functional field confirmed the reactor, microbial blends and carriers were in good adaptation and wastewater was decontaminated by their cooperation.
Resumo:
The effect of Cl- on the corrosive wear behaviour of AISI 321 stainless steel in H2SO4 solution was studied via the corrosive wear rate, the load bearing capacity of passive film and the relationship between pitting and corrosive wear. There is a critical load at natural potential, below which the corrosive wear rate is slightly lowered by Cl-, while above which is increased. At natural potential there are more pits at low load than that at a higher one in the wear tracks and the pits are also deeper. The load bearing capacity is lowered by Cl- at passive region and then the corrosive wear rate increased.
Resumo:
Landslide is a kind of serious geological hazards and its damage is very great. In recent years, landslides become more and more frequent along with increase of scale of engineering constructions and cause greater loss. Consequently, how to protect landslides has become important research subject in the engineering field. This paper improves the method how to compute landslide thrust and solves the irrational problem in the design of piles because of the irrational landslide thrust according to the theory and technology of existed anti-slide piles and pre-stressed cable anti-slide piles. Modern pre-stressing technology has been introduced and load balancing method has been used to improve the stressing behavior of anti-slide piles. Anchor cables, anti-slide piles and modern pre-stressing technology have been used to prevention complicated landslide. It is an important base to select values for the landslide thrust. An improved method to calculate design thrust of anti-slide piles has been presented in this paper on the base of residual thrust method by comparing existing methods to select values of landslide thrust in the design of anti-slide piles. In the method, residual landslide thrust behind the anti-slide piles and residual skid resistance before the piles has been analyzed, equitable distribution of residual landslide thrust behind the piles has been realized, and the method to select value of design thrust becomes more reasonable. The pre-stressed cable anti-slide piles are developed from the common anti-slide piles and are common method to prevent landslide. Their principle is that internal force of anti-slide piles is adjusted and size of section is diminished by changing constraint conditions of anti-slide piles. For landslides with deep slip surface and large scale of slopes, limitation of the method appears. Such landslides are in need of long piles and anchor cables which are not only non-economic but also can generate larger deformation and leave potential danger after prevention. For solving the problem, a new kind of anti-slide piles, inner pre-stressing force anti-slide piles, is presented in this paper, and its principle is that an additional force, which is generated in the inner anti-slide piles by arranging pre-stressed reinforcement or tight wire in a certain form in interior of anti-slide piles and stretching the steel reinforcement or tight wire, may balance out the internal force induced by landslide thrust whole or partly (load balancing method). The method will change bending moment which anti-slide piles are not good at bearing into compressive stress which piles are good at bearing, improve stressing performance of anti-slide piles greatly, diminish size of section, and make anti-slide piles not fissured in the natural service or postpone appearance of the fissures, and improve viability of anti-slide piles. Pre-stressed cable anti-slide piles and inner pre-stressing force anti-slide piles go by the general name of pre-stressed structure anti-slide piles in the paper, and their design and calculation method is also analyzed. A new calculation method is provided in the paper for design of anti-slide piles. For pre-stressed structure anti-slide piles, a new computation mode is firstly presented in the paper on the foundation of cantilever piles. In the mode, constraint form of load-bearing section of the anti-slide piles should be confirmed according to reservoir conditions in order to figure out amount of pre-stress of the anchor cables, and internal force should be analyzed for the load-bearing section of pre-stressed structure anti-slide piles so as to confirm anchorage section of anti-slide piles. Pre-stressed cables of the pre-stressed cable anti-slide piles can be arranged as required. This paper analyzes the load-bearing section of single-row and double-row pre-stressed cable anti-slide piles and provides a calculation method for design of the pre-stressed cable anti-slide piles. Inner pre-stressing force anti-slide piles are a new kind of structural style. Their load-bearing section is divided into four computation modes according to whether pre-stressed cables are applied for exterior of the anti-slide piles, and whether single-row or double-row exterior pre-stressed cables are applied. The load balancing method is used to analyze the computation modes for providing a method to design the inner pre-stressing force anti-slide piles rationally. Pre-stressed cable anti-slide piles and inner pre-stressing force anti-slide piles are applied to research on Mahe landfall in Yalong Lenggu hydropower station by the improved method to select value of design thrust of anti-slide piles. A good effect is obtained in the analysis.
Resumo:
The study of medieval carpentry is probably one of the most neglected aspects of archaeological research in Ireland. The principal difficulty is the nature of the evidence, in that timber, unless the conditions are right, rarely leaves a trace above ground. The problem is further exacerbated by the fact that not a single medieval timber-framed building has survived in Ireland. Nevertheless, in recent years, in addition to the medieval roof of Dunsoghley, which up to quite recently was thought to be the only surviving roof structure in Ireland, a further eight medieval roof structures have been identified. Furthermore, an extensive corpus of early medieval mills, with evidence for advanced Roman carpentry techniques, has been excavated, while evidence for Viking houses, on what is probably the largest extant Viking settlement in Europe, have also been recovered. Although post and wattle structures dominate the archaeological record of the Viking period, nevertheless, it will be shown that the Roman tradition of carpentry, evidenced in the early medieval mills from the early seventh century, continued in use in the wider Gaelic community. And it is one of the pivotal points of this study, that with the takeover of Dublin by the Gaelic Irish in the late tenth century, this Roman carpentry tradition was gradually assimilated into the carpentry tradition of the Viking towns, which were now largely inhabited by a mixed population of Hiberno-Norse. Evidence for this Gaelic influence can be seen not only in the gradual replacement of the Viking post and wattle house by timber houses with load-bearing walls, but more importantly by the evidence for waterfront structures founded on baseplates with mortise and tenoned uprights on the pre-Norman waterfront in Cork. Furthermore, it will be shown, that the carpentry techniques used to build the Wood Quay revetments, shortly after the Anglo-Norman conquest in AD 1170, supports this contention.
Resumo:
Composite resins and glass-ionomer cements were introduced to dentistry in the 1960s and 1970s, respectively. Since then, there has been a series of modifications to both materials as well as the development other groups claiming intermediate characteristics between the two. The result is a confusion of materials leading to selection problems. While both materials are tooth-colored, there is a considerable difference in their properties, and it is important that each is used in the appropriate situation. Composite resin materials are esthetic and now show acceptable physical strength and wear resistance. However, they are hydrophobic, and therefore more difficult to handle in the oral environment, and cannot support ion migration. Also, the problems of gaining long-term adhesion to dentin have yet to be overcome. On the other hand, glass ionomers are water-based and therefore have the potential for ion migration, both inward and outward from the restoration, leading to a number of advantages. However, they lack the physical properties required for use in load-bearing areas. A logical classification designed to differentiate the materials was first published by McLean et al in 1994, but in the last 15 years, both types of material have undergone further research and modification. This paper is designed to bring the classification up to date so that the operator can make a suitable, evidence-based, choice when selecting a material for any given situation.
Resumo:
This article investigates the damage imparted on load-bearing carbon fibers during the 3D weaving process and the subsequent compaction behavior of 3D woven textile preforms. The 3D multi-layer reinforcements were manufactured on a textile loom with few mechanical modifications to produce preforms with fibers orientated in the warp, weft, and through-the-thickness directions. Tensile tests were conducted on three types of commercially available carbon fibers, 12k HTA, 6k HTS, and 3k HTS in an attempt to quantify the effect of fiber damage induced during the 3D weaving process on the mechanical and physical performance of the fiber tows in the woven composite. The tests were conducted on fiber tows sampled from different locations in the manufacturing process from the bobbin, through the creel and loom mechanism, to the final woven fabric. Mechanical and physical testing were then conducted to quantify the tow geometry, orientation and the effect of compaction during manufacture of two styles of 3D woven composite by vacuumassisted resin transfer molding (VaRTM).
Resumo:
Masonry arches are strong, durable, aesthetically pleasing and largely maintenance free, yet since 1900 there has been a dramatic decline in their use. However, designers, contractors and clients now have access to a new method of constructing arches incorporating precast concrete voussoirs interconnected via polymeric reinforcement and a concrete screed. No centring is necessary, as the FlexiArch, when it is lifted, transforms under the forces of gravity into the desired arch shape. After discussing general aspects of innovation, the basic concept of the arch bridge system is presented along with technological advances since it was patented. Experiences gained from building over 40 FlexiArch bridges in the UK and Ireland and from model and full-scale tests carried out to validate the system during installation and in service are described. Thus under load the system behaves like a traditional masonry arch and existing analysis methods can be used for design and assessment.
Resumo:
Porous poly(L-lactic acid) (PLA) scaffolds of 85 per cent and 90 per cent porosity are prepared using polymer sintering and porogen leaching method. Different weight fractions of 10 per cent, 30 per cent, and 50 per cent of hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three-dimensional (3D) morphology and surface porosity are tested using micro-computer tomography (micro-CT), optical microscopy, and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change on the addition of HA. The micro-CT examinations show a slight decrease in the pore size and increase in the wall thickness accompanied by reduced anisotropy for the scaffolds containing HA. Scanning electron micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA particles and reduced leaching of the porogen. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA results in a reduction in the modulus of the scaffold at the first stage of elastic bending of the wall, but this is reversed for the second and third stages of collapse of the wall and densification in the compression tests. In the scaffolds with 85 per cent porosity, the addition of a high percentage of HA could result in 70 per cent decrease in stiffness in the first stage, 200 per cent increase in stiffness in the second stage, and 20 per cent increase in stiffness in the third stage. The results of these tests are compared with the Gibson cellular material model that is proposed for prediction of the behaviour of cellular material under compression. The pH and molecular weight changes are tracked for the scaffolds within a period of 35 days. The addition of HA keeps the pH in the alkaline region, which results in higher rate of degradation at an early period of observation, followed by a reduced rate of degradation later in the process. The final molecular weight is higher for the scaffolds with HA than for scaffolds of pure PLA. The manufactured scaffolds offer acceptable properties in terms of the pore size range and interconnectivity of the pores and porosity for non-load-bearing bone graft substitute; however, improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds. © 2008 IMechE.