946 resultados para Lipids.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cyanobacterium Microcystis aeruginosa strain NPCD-1, isolated from sewage treatment plant and characterized as a non-microcystin producer by mass spectrometry and molecular analysis, was found to be a source of lipid when cultivated in ASM-1 medium at 25 degrees C under constant white fluorescent illumination (109 mu mol photon m(-2) s(-1)). In these conditions, biomass productivity of 46.92 +/- 3.84 mg L-1 day(-1) and lipid content of 28.10 +/- 1.47% were obtained. Quantitative analysis of fatty acid methyl esters demonstrated high concentration of saturated fatty acids (50%), palmitic (24.34%) and lauric (13.21%) acids being the major components. The remaining 50% constituting unsaturated fatty acids showed higher concentrations of oleic (26.88%) and linoleic (12.53%) acids. The feasibility to produce biodiesel from this cyanobacterial lipid was demonstrated by running enzymatic transesterification reactions catalyzed by Novozym (R) 435 and using palm oil as feedstock control. Batch experiments were carried out using tert-butanol and iso-octane as solvent. Results showed similarity on the main ethyl esters formed for both feedstocks. The highest ethyl ester concentration was related to palmitate and oleate esters followed by laurate and linoleate esters. However, both reaction rates and ester yields were dependent on the solvent tested. Total ethyl ester concentrations varied in the range of 44.24-67.84 wt%, corresponding to ester yields from 80 to 100%. Iso-octane provided better solubility and miscibility, with ester yield of 98.10% obtained at 48 h for reaction using the cyanobacterium lipid, while full conversion was achieved in 12 h for reaction carried out with palm oil. These results demonstrated that cyanobacterial lipids from M. aeruginosa NPCD-1 have interesting properties for biofuel production. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The macrophages are the first host cells that interact with the fungus Paracoccidioides brasiliensis, but the main mechanisms that regulate this interaction are not well understood. Because the role played by P. brasiliensis lipids in macrophage activation was not previously investigated, we aimed to assess the influence of diverse lipid fractions from P. brasiliensis yeasts in this process. The possible participation of TLR2 and TLR4 signaling was also evaluated using TLR2- and TLR4-defective macrophages. Four lipid-rich fractions were studied as follows: F1, composed by membrane phospholipids and neutral lipids, F2 by glycolipids of short chain, F3a by membrane glycoproteins anchored by glycosylphosphatidylinositol (GPI) groups, and F3b by glycolipids of long chain. All assayed lipid fractions were able to activate peritoneal macrophages and induce nitric oxide (NO) production. Importantly, the F1 and F3a fractions exerted opposite effects in the control of P. brasiliensis uptake and killing, but both fractions inhibited cytokines production. Furthermore, the increased NO production and expression of costimulatory molecules induced by F3a was shown to be TLR2 dependent although F1 used Toll-independent mechanisms. In conclusion, our work suggests that lipid components may play a role in the innate immunity against P. brasiliensis infection using Toll-dependent and independent mechanisms to control macrophage activation.
Resumo:
Background: The aim was to investigate new markers for type 2 diabetes (T2DM) dyslipidemia related with LDL and HDL metabolism. Removal from plasma of free and esterified cholesterol transported in LDL and the transfer of lipids to HDL are important aspects of the lipoprotein intravascular metabolism. The plasma kinetics (fractional clearance rate, FCR) and transfers of lipids to HDL were explored in T2DM patients and controls, using as tool a nanoemulsion that mimics LDL lipid structure (LDE). Results: C-14- cholesteryl ester FCR of the nanoemulsion was greater in T2DM than in controls (0.07 +/- 0.02 vs. 0.05 +/- 0.01 h(-1), p = 0.02) indicating that LDE was removed faster, but FCR H-3- cholesterol was equal in both groups. Esterification rates of LDE free-cholesterol were equal. Cholesteryl ester and triglyceride transfer from LDE to HDL was greater in T2DM (4.2 +/- 0.8 vs. 3.5 +/- 0.7%, p = 0.03 and 6.8 +/- 1.6% vs. 5.0 +/- 1.1, p = 0.03, respectively). Phospholipid and free cholesterol transfers were not different. Conclusions: The kinetics of free and esterified cholesterol tended to be independent in T2DM patients and the lipid transfers to HDL were also disturbed. These novel findings may be related with pathophysiological mechanisms of diabetic macrovascular disease.
Resumo:
Abstract Background Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is a skin cancer therapy that still has limitations due to the low penetration of this drug into the skin. We have proposed in this work a delivery system for 5-ALA based on liposomes having lipid composition similar to the mammalian stratum corneum (SCLLs) in order to optimize its skin delivery in Photodynamic Therapy (PDT) of skin cancers. Methods SCLLs were obtained by reverse phase evaporation technique and size distribution of the vesicles was determinated by photon correlation spectroscopy. In vitro permeation profile was characterized using hairless mouse skin mounted in modified Franz diffusion cell. Results Size exclusion chromatography on gel filtration confirmed vesicle formation. SCLLs obtained by presented a degree of encapsulation of 5-ALA around 5.7%. A distribution of vesicle size centering at around 500 nm and 400 nm respectively for SCLLs and SCLLs containing 5-ALA was found. In vitro 5-ALA permeation study showed that SCLLs preparations presented higher skin retention significantly (p < 0.05) on the epidermis without SC + dermis, with a decreasing of skin permeation compared to aqueous solution. Conclusions The in vitro delivery performance provided by SCLLs lead to consider this systems adequate for the 5-ALA-PDT of skin cancer, since SCLLs have delivered 5-ALA to the target skin layers (viable epidermis + dermis) to be treated by topical PDT of skin cancer.
Resumo:
Se cultivó alga roja Gratelupia doryphora en agua de mar enriquecida con Provasoli y en glicerol. La incubación en agua de mar condujo a un aumento en el porcentaje de los ácidos grasos polünsaturados, mientras que el glicerol incrementó el contenido de lípidos totales. Por tanto, si la alga está siendo producida como un cultivo heterotrófico, es posible aumentar la biomasa de la misma así como el contenido de ácidos grasos biológicamente activos. The red alga Gratelupia doryphora was cultivated in Provasoli enricher (plain) seawater and in a glycerol media. The incubation in seawater leads to an increase in the percentage of polyunsaturated acids, while the glycerol increase the total lipid content. If the alga is being grown as a heterotrophic culture, it is possible to increase the alga biomass as well as the content of biologically-active fatty acids.
Resumo:
Se han eliminado páginas en blanco por lo que la paginación puede variar con respecto al índice
Resumo:
Lipolysis and oxidation of lipids in foods are the major biochemical and chemical processes that cause food quality deterioration, leading to the characteristic, unpalatable odour and flavour called rancidity. In addition to unpalatability, rancidity may give rise to toxic levels of certain compounds like aldehydes, hydroperoxides, epoxides and cholesterol oxidation products. In this PhD study chromatographic and spectroscopic techniques were employed to determine the degree of lipid oxidation in different animal products and its relationship with technological parameters like feeding fat sources, packaging, processing and storage conditions. To achieve this goal capillary gas chromatography (CGC) was employed not only to determine the fatty acids profile but also, after solid phase extraction, the amount of sterols (cholesterol and phytosterols) and cholesterol oxidation products (COPs). To determine hydroperoxides, primary products of oxidation and quantify secondary products UV/VIS absorbance spectroscopy was applied. Beef and pork meat in this study were analysed. In actual fact, lipid oxidation is a major deterioration reaction in meat, meat products and results in adverse changes in the colour, flavour, texture of meat and develops different compounds which should be a risk to human health as oxysterols. On beef and pork meat, a study of lipid fraction during storage was carried out to evaluate its shelf-life and some nutritional features life saturated/unsaturated fatty acids ratio and sterols content, in according to the interest that has been growing around functional food in the last years. The last part of this research was focused on the study of lipid oxidation in emulsions. In oil-in-water emulsions antioxidant activity of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was evaluated. The rates of lipid oxidation of 1.0% stripped soybean oil-in-water emulsions with DOPC were followed by monitoring lipid hydroperoxide and hexanal as indicators of primary and secondary oxidation products and the droplet surface charge or zeta potential (ζ) of the emulsions with varying concentrations of DOPC were tested. This manuscript reports the main results obtained in the three activities briefly summarized as follows: 1. study on effects of feeding composition on the photoxidative stability of lipids from beef meat, evaluated during storage under commercial retail conditions; 2. evaluation of effects of diets and storage conditions on the oxidative stability of pork meat lipids; 3. study on oxidative behavior of DOPC in stripped soybean oil-in-water emulsions stabilized by nonionic surfactant.
Resumo:
The amyloid peptide (Aß), a normal constituent of neuronal and non-neuronal cells, has been shown to be a major component of the extracellular plaque of Alzheimer’s disease (AD). The interaction of Aß peptides with the lipid matrix of neuronal cell membranes plays an important role in the pathogenesis of AD. In this study, we have developed peptide-tethered artificial lipid membranes by the Langmuir-Blodgett and Langmuir-Schaefer methods. Anti-Aß40-mAb labeled with a fluorophore was used to probe the Aß40 binding to the model membrane system. Systematic studies on the antibody or Aß-membrane interactions were carried out in our model systems by Surface Plasmon Field-Enhanced Fluorescence Spectroscopy (SPFS). Aß adsorption is critically determined by the lipid composition of the membranes. Aß specifically binds with membranes of sphingomyelin, and this preferential adsorption was markedly amplified by the addition of sterols (cholesterol or 25-OH-Chol). Fluorescence microscopy indicated that 25-OH-Chol could also form micro-domains with sphingomyelin as cholesterol does at the conditions used for the built-up of the model membranes. Our findings suggest that micro-domains composed of sphingomyelin and the sterols could be the binding sites of Aß and the role of sphingomyelin in AD should receive much more attention. The artificial membranes provide a novel platform for the study on AD, and SPFS is a potential tool for detecting Aß-membrane interaction. Numerous investigations indicate that the ability of Aß to form fibrils is considerably dependent upon the levels of ß-sheet structure adopted by Aß. Membrane-mediated conformational transition of Aß has been demonstrated. In this study, we focus on the interaction of Aß and the membranes composed of POPC/SM/25-OH-Chol (2:1:1). The artificial membrane system was established by the methods as described above. Immunoassy based on a pair of monoclonal antibodies (mAbs) against different epitopes was employed to detect the orientation of the Aß at the model membranes. Kinetics of antibody-Aß binding was determined by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). The attempt has also been made to probe the change in the conformation of Aß using SPFS combined with immunoassay. Melatonin was employed to induce the conformational change of Aß. The orientation and the conformational change of Aß are evaluated by analysing kinetic/affinity parameters. This work provides novel insight into the investigation on the structure of Aß at the membrane surface.
Resumo:
Tethered bilayer lipid membranes (tBLMs) are a promising model system for the natural cell membrane. They consist of a lipid bilayer that is covalently coupled to a solid support via a spacer group. In this study, we developed a suitable approach to increase the submembrane space in tBLMs. The challenge is to create a membrane with a lower lipid density in order to increase the membrane fluidity, but to avoid defects that might appear due to an increase in the lateral space within the tethered monolayers. Therefore, various synthetic strategies and different monolayer preparation techniques were examined. Synthetical attempts to achieve a large ion reservoir were made in two directions: increasing the spacer length of the tether lipids and increasing the lateral distribution of the lipids in the monolayer. The first resulted in the synthesis of a small library of tether lipids (DPTT, DPHT and DPOT) characterized by 1H and 13C NMR, FD-MS, ATR, DSC and TGA. The synthetic strategy for their preparation includes synthesis of precursor with a double bond anchor that can be easily modified for different substrates (e.g. metal and metaloxide). Here, the double bond was modified into a thiol group suitable for gold surface. Another approach towards the preparation of homogeneous monolayers with decreased two-dimensional packing density was the synthesis of two novel anchor lipids: DPHDL and DDPTT. DPHDL is “self-diluted” tether lipid containing two lipoic anchor moieties. DDPTT has an extended lipophylic part that should lead to the preparation of diluted, leakage free proximal layers that will facilitate the completion of the bilayer. Our tool-box of tether lipids was completed with two fluorescent labeled lipid precursors with respectively one and two phytanyl chains in the hydrophobic region and a dansyl group as a fluorophore. The use of such fluorescently marked lipids is supposed to give additional information for the lipid distribution on the air-water interface. The Langmuir film balance was used to investigate the monolayer properties of four of the synthesized thiolated anchor lipids. The packing density and mixing behaviour were examined. The results have shown that mixing anchor with free lipids can homogeneously dilute the anchor lipid monolayers. Moreover, an increase in the hydrophylicity (PEG chain length) of the anchor lipids leads to a higher packing density. A decrease in the temperature results in a similar trend. However, increasing the number of phytanyl chains per lipid molecule is shown to decrease the packing density. LB-monolayers based on pure and mixed lipids in different ratio and transfer pressure were tested to form tBLMs with diluted inner layers. A combination of the LB-monolayer transfer with the solvent exchange method accomplished successfully the formation of tBLMs based on pure DPOT. Some preliminary investigations of the electrical sealing properties and protein incorporation of self-assembled DPOT and DDPTT-based tBLMs were conducted. The bilayer formation performed by solvent exchange resulted in membranes with high resistances and low capacitances. The appearance of space beneath the membrane is clearly visible in the impedance spectra expressed by a second RC element. The latter brings the conclusion that the longer spacer in DPOT and the bigger lateral space between the DDPTT molecules in the investigated systems essentially influence the electrical parameters of the membrane. Finally, we could show the functional incorporation of the small ion carrier valinomycin in both types of membranes.
Resumo:
Amphiphile Blockcopolymere sind in der Lage in Wasser Morphologien auszubilden, die analog sind zur hydrophil-hydrophob-hydrophil-Struktur von natürlichen Lipiddoppelschichten. In dieser Arbeit wird zum ersten Mal die Präparation und Charakterisierung von oberflächengestützten Polymerdoppelschichten aus Polybutadien-b-Polyethylenoxid (PB-PEO) beschrieben. Für die Herstellung dieser Strukturen wurden zwei unterschiedliche Präparationsstrategien verfolgt. Der erste Weg besteht aus einer zweistufigen Methode, bei der im ersten Schritt organisierte Monoschichten mittels Langmuir-Blodgett-Transfer auf Gold übertragen und kovalent angebunden werden. Im zweiten Schritt werden hydrophobe Wechselwirkungen ausgenutzt, um über Langmuir-Schaefer-Transfer eine weitere Schicht aufzubringen. Somit wurden homogene Architekturen erzeugt, die oberflächengestützten Lipiddoppelschichten gleichen. Als alternativer, einstufiger Ansatz zur Herstellung von Polymerdoppelschichten wurde das Spreiten von Polymervesikeln auf Gold verfolgt. Auch hierdurch ließen sich Doppelschichtstrukturen mit einer vollständigen Oberflächenbedeckung erzeugen. Die hergestellten Polymerdoppelschichten besitzen eine Dicke von 11-14 nm, die von der Präparationsmethode abhängt. Die Polymerstrukturen weisen bei Trocknung für 1.5 h eine Stabilität gegenüber Luft auf. Bei längeren Trocknungszeiten von ca. 12 h kommt es zu einer Reorganisation der Oberfläche. Dies deutet darauf hin, dass Wasser dazu notwendig ist die Strukturen auf lange Sicht zu stabilisieren. Um die Biokompatibilität der Polymerschichten nachzuweisen, wurden die Wechselwirkungen mit dem membranaktiven Peptid Polymyxin B und dem Transmembranprotein α-Haemolysin gezeigt. Mobilität ist ein wichtiger Faktor für die korrekte Funktion vieler Transmembranproteine. Um die laterale Diffusionsdynamik innerhalb der künstlichen Strukturen zu untersuchen, wurde die Mobilität eines integralen Modellpeptids und von fluoreszierenden Membransonden gemessen. Es konnte mit einzelmolekülempfindlichen Techniken gezeigt werden, dass das α-helikale Peptid und die kleinen Fluoreszenzfarbstoffe frei im hydrophoben Kern der Polymerdoppelschicht diffundieren können. Die Diffusion von beiden Spezies scheint stark von der Fluidität der Polymermatrix beeinflusst zu sein. Ein weiterer Teil dieser Arbeit widmet sich der Entwicklung eines angemessenen, lipidbasierten Referenzsystems für zukünftige Proteinuntersuchungen. Hierzu wurde eine neue Methode zu Herstellung von peptidgestützten Lipiddoppelschichtmembranen entwickelt. Dies wurde durch kovalente Befestigung eines Thiopeptids an einen Goldfilm und darauffolgende Anbindung eines Lipids erreicht. Zur Ausbildung der Lipiddoppelschicht auf dem Lipopeptidunterbau wurder der Rapid Solvent Exchange verwendet. Die Ausbildung der Lipiddoppelschicht wurde sowohl auf microskopischer als auch auf makroskopischer Ebene nachgewiesen. Im letzten Schritt wurde die Anwendbarkeit des Modelsystems für elektrochemische Messungen durch den funktionalen Einbau des Ionentransporters Valinomycin unter Beweis gestellt.
Resumo:
The present study aimed to assess the effects of excess fat, fructose and fat-plus-fructose intakes on intrahepatocellular lipid (IHCL).
Resumo:
Intramyocellular lipids (IMCL) are flexible fuel stores that are depleted by physical exercise and replenished by fat intake. IMCL or their degradation products are thought to interfere with insulin signaling thereby contributing to insulin resistance. From a practical point of view it is desirable to deplete IMCL prior to replenishing them. So far, it is not clear for how long and at which intensity subjects have to exercise in order to deplete IMCL. We therefore aimed at developing a standardized exercise protocol that is applicable to subjects over a broad range of exercise capacity and insulin sensitivity and allows measuring reliably reduced IMCL levels.Twelve male subjects, including four diabetes type 2 patients, with wide ranges of exercise capacity (VO(2)peak per total body weight 27.9-55.8 ml x kg(-1) x min(-1)), insulin sensitivity (glucose infusion rate per lean body mass 4.7-15.3 mg x min(-1) x kg(-1)), and BMI (21.7-31.5 kg x m(-2)), respectively, were enrolled. Using (1)H magnetic resonance spectroscopy ((1)H-MRS), IMCL was measured in m.tibialis anterior and m.vastus intermedius before and during a depletion protocol of a week, consisting of a moderate additional physical activity (1 h daily at 60% VO(2)peak) and modest low-fat (10-15%) diet.Absolute IMCL-levels were significantly reduced in both muscles during the first 3 days and stayed constant for the next 3 days of an identical diet/exercise-scheme. These reduced IMCL levels were independent of insulin sensitivity, yet a tendency to lower depleted IMCL levels has been observed in subjects with higher VO(2)peak.The proposed protocol is feasible in subjects with large differences in exercise capacity, insulin sensitivity, and BMI, leading to reduced IMCL levels that neither depend on the exact duration of the depletion protocol nor on insulin sensitivity. This allows for a standardized preparation of IMCL levels either for correlation with other physiological parameters or for replenishment studies.