893 resultados para Linear optimal control
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work a Nonzero-Sum NASH game related to the H2 and H∞ control problems is formulated in the context of convex optimization theory. The variables of the game are limiting bounds for the H2 and H∞ norms, and the final controller is obtained as an equilibrium solution, which minimizes the `sensitivity of each norm' with respect to the other. The state feedback problem is considered and illustrated by numerical examples.
Resumo:
This paper deals with a system that describes an electrical circuitcomposed by a linear system coupled to a nonlinear one involving a tunneldiode in a flush-and-fill circuit. One of the most comprehensive models for thiskind of circuits was introduced by R. Fitzhugh in 1961, when taking on carebiological tasks. The equation has in its phase plane only two periodic solutions,namely, the unstable singular point S0 and the stable cycle Γ. If the system isat rest on S0, the natural flow of orbits seeks to switch-on the process by going- as time goes by - toward its steady-state, Γ. By using suitable controls it ispossible to reverse such natural tendency going in a minimal time from Γ toS0, switching-off in this way the system. To achieve this goal it is mandatorya minimal enough strength on controls. These facts will be shown by means ofconsiderations on the null control sets in the process.
Resumo:
Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
This paper studies the asymptotic optimality of discrete-time Markov decision processes (MDPs) with general state space and action space and having weak and strong interactions. By using a similar approach as developed by Liu, Zhang, and Yin [Appl. Math. Optim., 44 (2001), pp. 105-129], the idea in this paper is to consider an MDP with general state and action spaces and to reduce the dimension of the state space by considering an averaged model. This formulation is often described by introducing a small parameter epsilon > 0 in the definition of the transition kernel, leading to a singularly perturbed Markov model with two time scales. Our objective is twofold. First it is shown that the value function of the control problem for the perturbed system converges to the value function of a limit averaged control problem as epsilon goes to zero. In the second part of the paper, it is proved that a feedback control policy for the original control problem defined by using an optimal feedback policy for the limit problem is asymptotically optimal. Our work extends existing results of the literature in the following two directions: the underlying MDP is defined on general state and action spaces and we do not impose strong conditions on the recurrence structure of the MDP such as Doeblin's condition.
Resumo:
MultiProcessor Systems-on-Chip (MPSoC) are the core of nowadays and next generation computing platforms. Their relevance in the global market continuously increase, occupying an important role both in everydaylife products (e.g. smartphones, tablets, laptops, cars) and in strategical market sectors as aviation, defense, robotics, medicine. Despite of the incredible performance improvements in the recent years processors manufacturers have had to deal with issues, commonly called “Walls”, that have hindered the processors development. After the famous “Power Wall”, that limited the maximum frequency of a single core and marked the birth of the modern multiprocessors system-on-chip, the “Thermal Wall” and the “Utilization Wall” are the actual key limiter for performance improvements. The former concerns the damaging effects of the high temperature on the chip caused by the large power densities dissipation, whereas the second refers to the impossibility of fully exploiting the computing power of the processor due to the limitations on power and temperature budgets. In this thesis we faced these challenges by developing efficient and reliable solutions able to maximize performance while limiting the maximum temperature below a fixed critical threshold and saving energy. This has been possible by exploiting the Model Predictive Controller (MPC) paradigm that solves an optimization problem subject to constraints in order to find the optimal control decisions for the future interval. A fully-distributedMPC-based thermal controller with a far lower complexity respect to a centralized one has been developed. The control feasibility and interesting properties for the simplification of the control design has been proved by studying a partial differential equation thermal model. Finally, the controller has been efficiently included in more complex control schemes able to minimize energy consumption and deal with mixed-criticalities tasks
Resumo:
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive engines is inherently related to unsteady conditions. There are various operating conditions experienced by (diesel) engines that can be classified as transient. Besides the variation of the engine operating point, in terms of engine speed and torque, also the warm up phase can be considered as a transient condition. Chapter 2 has to do with this thermal transient condition; more precisely the main issue is the performance of a Selective Catalytic Reduction (SCR) system during cold start and warm up phases of the engine. The proposal of the underlying work is to investigate and identify optimal exhaust line heating strategies, to provide a fast activation of the catalytic reactions on SCR. Chapters 3 and 4 focus the attention on the dynamic behavior of the engine, when considering typical driving conditions. The common approach to dynamic optimization involves the solution of a single optimal-control problem. However, this approach requires the availability of models that are valid throughout the whole engine operating range and actuator ranges. In addition, the result of the optimization is meaningful only if the model is very accurate. Chapter 3 proposes a methodology to circumvent those demanding requirements: an iteration between transient measurements to refine a purpose-built model and a dynamic optimization which is constrained to the model validity region. Moreover all numerical methods required to implement this procedure are presented. Chapter 4 proposes an approach to derive a transient feedforward control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient.
Resumo:
In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.
Resumo:
The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.
Resumo:
Over the past few years, the common practice within air traffic management has been that commercial aircraft fly by following a set of predefined routes to reach their destination. Currently, aircraft operators are requesting more flexibility to fly according to their prefer- ences, in order to achieve their business objectives. Due to this reason, much research effort is being invested in developing different techniques which evaluate aircraft optimal trajectory and traffic synchronisation. Also, the inefficient use of the airspace using barometric altitude overall in the landing and takeoff phases or in Continuous Descent Approach (CDA) trajectories where currently it is necessary introduce the necessary reference setting (QNH or QFE). To solve this problem and to permit a better airspace management born the interest of this research. Where the main goals will be to evaluate the impact, weakness and strength of the use of geometrical altitude instead of the use of barometric altitude. Moreover, this dissertation propose the design a simplified trajectory simulator which is able to predict aircraft trajectories. The model is based on a three degrees of freedom aircraft point mass model that can adapt aircraft performance data from Base of Aircraft Data, and meteorological information. A feature of this trajectory simulator is to support the improvement of the strategic and pre-tactical trajectory planning in the future Air Traffic Management. To this end, the error of the tool (aircraft Trajectory Simulator) is measured by comparing its performance variables with actual flown trajectories obtained from Flight Data Recorder information. The trajectory simulator is validated by analysing the performance of different type of aircraft and considering different routes. A fuel consumption estimation error was identified and a correction is proposed for each type of aircraft model. In the future Air Traffic Management (ATM) system, the trajectory becomes the fundamental element of a new set of operating procedures collectively referred to as Trajectory-Based Operations (TBO). Thus, governmental institutions, academia, and industry have shown a renewed interest for the application of trajectory optimisation techniques in com- mercial aviation. The trajectory optimisation problem can be solved using optimal control methods. In this research we present and discuss the existing methods for solving optimal control problems focusing on direct collocation, which has received recent attention by the scientific community. In particular, two families of collocation methods are analysed, i.e., Hermite-Legendre-Gauss-Lobatto collocation and the pseudospectral collocation. They are first compared based on a benchmark case study: the minimum fuel trajectory problem with fixed arrival time. For the sake of scalability to more realistic problems, the different meth- ods are also tested based on a real Airbus 319 El Cairo-Madrid flight. Results show that pseudospectral collocation, which has shown to be numerically more accurate and computa- tionally much faster, is suitable for the type of problems arising in trajectory optimisation with application to ATM. Fast and accurate optimal trajectory can contribute properly to achieve the new challenges of the future ATM. As atmosphere uncertainties are one of the most important issues in the trajectory plan- ning, the final objective of this dissertation is to have a magnitude order of how different is the fuel consumption under different atmosphere condition. Is important to note that in the strategic phase planning the optimal trajectories are determined by meteorological predictions which differ from the moment of the flight. The optimal trajectories have shown savings of at least 500 [kg] in the majority of the atmosphere condition (different pressure, and temperature at Mean Sea Level, and different lapse rate temperature) with respect to the conventional procedure simulated at the same atmosphere condition.This results show that the implementation of optimal profiles are beneficial under the current Air traffic Management (ATM).
Resumo:
In this work we review some earlier distributed algorithms developed by the authors and collaborators, which are based on two different approaches, namely, distributed moment estimation and distributed stochastic approximations. We show applications of these algorithms on image compression, linear classification and stochastic optimal control. In all cases, the benefit of cooperation is clear: even when the nodes have access to small portions of the data, by exchanging their estimates, they achieve the same performance as that of a centralized architecture, which would gather all the data from all the nodes.
Resumo:
Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.