972 resultados para Left ventricular function quantification
Resumo:
Decompensated heart failure, either acute (cardiogenic shock) or chronic (terminal heart failure) may become refractory to conventional therapy, then requiring mechanical assistance of the failing heart to improve hemodynamics. In the acute setting, aortic balloon counterpulsation is used as first line therapy. In case of failure, other techniques include the extracorporal membrane oxygenator or a percutaneous left ventricular assist device, such as the TandemHeart or the Impella. In chronic heart failure, long-term left ventricular assist devices can be surgically implanted. The continuous flow devices give here the best results. The aim of the present review article is to present with some details the various methods of mechanical left ventricle assistance to which the intensivist may be confronted in his daily practice.
Resumo:
ABSTRACT: BACKGROUND: In acute myocardial infarction (AMI), both tissue necrosis and edema are present and both might be implicated in the development of intraventricular dyssynchrony. However, their relative contribution to transient dyssynchrony is not known. Cardiovascular magnetic resonance (CMR) can detect necrosis and edema with high spatial resolution and it can quantify dyssynchrony by tagging techniques. METHODS: Patients with a first AMI underwent percutaneous coronary interventions (PCI) of the infarct-related artery within 24 h of onset of chest pain. Within 5-7 days after the event and at 4 months, CMR was performed. The CMR protocol included the evaluation of intraventricular dyssynchrony by applying a novel 3D-tagging sequence to the left ventricle (LV) yielding the CURE index (circumferential uniformity ratio estimate; 1 = complete synchrony). On T2-weighted images, edema was measured as high-signal (>2 SD above remote tissue) along the LV mid-myocardial circumference on 3 short-axis images (% of circumference corresponding to the area-at-risk). In analogy, on late-gadolinium enhancement (LGE) images, necrosis was quantified manually as percentage of LV mid-myocardial circumference on 3 short-axis images. Necrosis was also quantified on LGE images covering the entire LV (expressed as %LV mass). Finally, salvaged myocardium was calculated as the area-at-risk minus necrosis (expressed as % of LV circumference). RESULTS: After successful PCI (n = 22, 2 female, mean age: 57 ± 12y), peak troponin T was 20 ± 36ug/l and the LV ejection fraction on CMR was 41 ± 8%. Necrosis mass was 30 ± 10% and CURE was 0.91 ± 0.05. Edema was measured as 58 ± 14% of the LV circumference. In the acute phase, the extent of edema correlated with dyssynchrony (r2 = -0.63, p < 0.01), while extent of necrosis showed borderline correlation (r2 = -0.19, p = 0.05). PCI resulted in salvaged myocardium of 27 ± 14%. LV dyssynchrony (=CURE) decreased at 4 months from 0.91 ± 0.05 to 0.94 ± 0.03 (p < 0.004, paired t-test). At 4 months, edema was absent and scar %LV slightly shrunk to 23.7 ± 10.0% (p < 0.002 vs baseline). Regression of LV dyssynchrony during the 4 months follow-up period was predicted by both, the extent of edema and its necrosis component in the acute phase. CONCLUSIONS: In the acute phase of infarction, LV dyssynchrony is closely related to the extent of edema, while necrosis is a poor predictor of acute LV dyssynchrony. Conversely, regression of intraventricular LV dyssynchrony during infarct healing is predicted by the extent of necrosis in the acute phase.
Resumo:
OBJECTIVE: Off-pump trans left ventricular approach provides more precise deployment of stented aortic valve of any size with respect to the endovascular replacement. One of the key steps of this procedure is the ventricle repair after catheter withdrawing. We designed an animal study to compare the consistency of a sutureless repair of the left ventricle access using nitinol occluder with and without pericardial cuff on the ventricular side. METHODS: Material description: The Amplatz-nitinol occluder consists of two square heads squeezing ventricle wall in between them, sealing the defect. To improve its sealing property, a pericardial patch was sutured to the ventricular head of the occluder. Animal study setup: In adult pigs, a 30F sheath was inserted into the epigastric area through the cardiac apex, up to the left ventricle, simulating the approach for off-pump aortic valve replacement. The sheath was then removed and the ventricle closed with standard occluder in half of the animals, and cuffed occluder in the other half. Animals were followed-up for 3h, collecting haemodynamics data and pericardial bleeding. RESULTS: Device was successfully deployed in 12 animals in less than 1min. In the group where the standard occluder was used, bleeding during the deployment was 80+/-20ml and after the deployment was 800+/-20ml over 3h. In the group where the cuffed occluder was used, bleeding during the deployment was 85+/-20ml and after the deployment was 100+/-5ml over 3h. In the cuffed group, bleeding was significantly lower than the standard group, p-value being <0.001. CONCLUSIONS: The occluder is easy to use and the pericardial cuff dramatically increases its efficacy as demonstrated by a significant reduction of blood loss. The cuffed occluder opens the way for endoscopic, off-pump, transventricular aortic valve replacement.
Resumo:
To the Editor: The value of angiotensin-converting– enzyme (ACE) inhibitors, beta-blockers, and spironolactone has been well established by the results of numerous clinical trials. About 70 percent of the patients described by Rose et al. were treated with ACE inhibitors or angiotensin II–receptor antagonists; 35 to 40 percent received spironolactone, and only about 20 percent received beta-blockers. Thus, this population cannot have been considered to be optimally treated from the point of view of medical therapy.
Resumo:
The importance of the right ventricle as a determinant of clinical symptoms, exercise capacity, peri-operative survival and postoperative outcome has been underestimated for a long time. Right ventricular ejection fraction has been used as a measure of right ventricular function but has been found to be dependent on loading conditions, ventricular interaction as well as on myocardial structure. Altered left ventricular function in patients with valvular disease influences right ventricular performance mainly by changes in afterload but also by ventricular interaction. Right ventricular function and regional wall motion can be determined with right ventricular angiography, radionuclide ventriculography, two-dimensional echocardiography or magnetic resonance imaging. However, the complex structure of the right ventricle and its pronounced translational movements render quantification difficult. True regional wall motion analysis is, however, possible with myocardial tagging based on magnetic resonance techniques. With this technique a baso-apical shear motion of the right ventricle was observed which was enhanced in patients with aortic stenosis.
Resumo:
Angiotensin II is a potent arterial vasoconstrictor and induces hypertension. Angiotensin II also exerts a trophic effect on cardiomyocytes in vitro. The goals of the present study were to document an in vivo increase in cardiac angiotensins in the absence of elevated plasma levels or hypertension and to investigate prevention or regression of ventricular hypertrophy by renin-angiotensin system blockade. We demonstrate that high cardiac angiotensin II is directly responsible for right and left ventricular hypertrophy. We used transgenic mice overexpressing angiotensinogen in cardiomyocytes characterized by cardiac hypertrophy without fibrosis and normal blood pressure. Angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade prevent or normalize ventricular hypertrophy. Surprisingly, in control mice, receptor blockade decreases tissue angiotensin II despite increased plasma levels. This suggests that angiotensin II may be protected from metabolization by binding to its receptor. Blocking of the angiotensin II type 1 receptor rather than enhanced stimulation of the angiotensin II type 2 receptor may prevent remodeling and account for the beneficial effects of angiotensin antagonists.
Resumo:
ECG criteria for left ventricular hypertrophy (LVH) have been almost exclusively elaborated and calibrated in white populations. Because several interethnic differences in ECG characteristics have been found, the applicability of these criteria to African individuals remains to be demonstrated. We therefore investigated the performance of classic ECG criteria for LVH detection in an African population. Digitized 12-lead ECG tracings were obtained from 334 African individuals randomly selected from the general population of the Republic of Seychelles (Indian Ocean). Left ventricular mass was calculated with M-mode echocardiography and indexed to body height. LVH was defined by taking the 95th percentile of body height-indexed LVM values in a reference subgroup. In the entire study sample, 16 men and 15 women (prevalence 9.3%) were finally declared to have LVH, of whom 9 were of the reference subgroup. Sensitivity, specificity, accuracy, and positive and negative predictive values for LVH were calculated for 9 classic ECG criteria, and receiver operating characteristic curves were computed. We also generated a new composite time-voltage criterion with stepwise multiple linear regression: weighted time-voltage criterion=(0.2366R(aVL)+0.0551R(V5)+0.0785S(V3)+ 0.2993T(V1))xQRS duration. The Sokolow-Lyon criterion reached the highest sensitivity (61%) and the R(aVL) voltage criterion reached the highest specificity (97%) when evaluated at their traditional partition value. However, at a fixed specificity of 95%, the sensitivity of these 10 criteria ranged from 16% to 32%. Best accuracy was obtained with the R(aVL) voltage criterion and the new composite time-voltage criterion (89% for both). Positive and negative predictive values varied considerably depending on the concomitant presence of 3 clinical risk factors for LVH (hypertension, age >/=50 years, overweight). Median positive and negative predictive values of the 10 ECG criteria were 15% and 95%, respectively, for subjects with none or 1 of these risk factors compared with 63% and 76% for subjects with all of them. In conclusion, the performance of classic ECG criteria for LVH detection was largely disparate and appeared to be lower in this population of East African origin than in white subjects. A newly generated composite time-voltage criterion might provide improved performance. The predictive value of ECG criteria for LVH was considerably enhanced with the integration of information on concomitant clinical risk factors for LVH.
Resumo:
In this work we describe the usage of bilinear statistical models as a means of factoring the shape variability into two components attributed to inter-subject variation and to the intrinsic dynamics of the human heart. We show that it is feasible to reconstruct the shape of the heart at discrete points in the cardiac cycle. Provided we are given a small number of shape instances representing the same heart atdifferent points in the same cycle, we can use the bilinearmodel to establish this. Using a temporal and a spatial alignment step in the preprocessing of the shapes, around half of the reconstruction errors were on the order of the axial image resolution of 2 mm, and over 90% was within 3.5 mm. From this, weconclude that the dynamics were indeed separated from theinter-subject variability in our dataset.
Resumo:
Introducción y objetivos. Se ha señalado que, en la miocardiopatía hipertrófica (MCH), la desorganización de las fibras regionales da lugar a segmentos en los que la deformación es nula o está gravemente reducida, y que estos segmentos tienen una distribución no uniforme en el ventrículo izquierdo (VI). Esto contrasta con lo observado en otros tipos de hipertrofia como en el corazón de atleta o la hipertrofia ventricular izquierda hipertensiva (HVI-HT), en los que puede haber una deformación cardiaca anormal, pero nunca tan reducida como para que se observe ausencia de deformación. Así pues, proponemos el empleo de la distribución de los valores de strain para estudiar la deformación en la MCH. Métodos. Con el empleo de resonancia magnética marcada (tagged), reconstruimos la deformación sistólica del VI de 12 sujetos de control, 10 atletas, 12 pacientes con MCH y 10 pacientes con HVI-HT. La deformación se cuantificó con un algoritmo de registro no rígido y determinando los valores de strain sistólico máximo radial y circunferencial en 16 segmentos del VI. Resultados. Los pacientes con MCH presentaron unos valores medios de strain significativamente inferiores a los de los demás grupos. Sin embargo, aunque la deformación observada en los individuos sanos y en los pacientes con HVI-HT se concentraba alrededor del valor medio, en la MCH coexistían segmentos con contracción normal y segmentos con una deformación nula o significativamente reducida, con lo que se producía una mayor heterogeneidad de los valores de strain. Se observaron también algunos segmentos sin deformación incluso en ausencia de fibrosis o hipertrofia. Conclusiones. La distribución de strain caracteriza los patrones específicos de deformación miocárdica en pacientes con diferentes etiologías de la HVI. Los pacientes con MCH presentaron un valor medio de strain significativamente inferior, así como una mayor heterogeneidad de strain (en comparación con los controles, los atletas y los pacientes con HVI-HT), y tenían regiones sin deformación.
Resumo:
Idiopathic premature ventricular complexes originating from the ventricular outflow tract: evaluation, prognosis and management The prognosis of ventricular premature complexes (VPC) in the absence of heart disease is considered benign. VPC usually originate from the right or, less commonly, left ventricular outflow tract. QRS complexes therefore usually assume a left bundle branch block and inferior axis morphology. These VPC, particularly if very frequent (> 20,000 per day), may adversely affect left ventricular function and their suppression can restore normal function. Moreover, there is a clinical overlap with arrhythmogenic right ventricular dysplasia and this diagnosis should be considered when facing a left bundle branch block shaped VPC. However, the prognosis of outflow tract VPC is good for appropriately selected patients with normal left ventricular function, absence of syncope or ventricular tachycardia, and no evidence of cardiac disease.
Resumo:
Objective: Although 24-hour arterial blood pressure can be monitored in a free-moving animal using pressure telemetric transmitter mostly from Data Science International (DSI), accurate monitoring of 24-hour mouse left ventricular pressure (LVP) is not available because of its insufficient frequency response to a high frequency signal such as the maximum derivative of mouse LVP (LVdP/dtmax and LVdP/dtmin). The aim of the study was to develop a tiny implantable flow-through LVP telemetric transmitter for small rodent animals, which can be potentially adapted for human 24 hour BP and LVP accurate monitoring. Design and Method: The mouse LVP telemetric transmitter (Diameter: _12 mm, _0.4 g) was assembled by a pressure sensor, a passive RF telemetry chip, and to a 1.2F Polyurethane (PU) catheter tip. The device was developed in two configurations and compared with existing DSI system: (a) prototype-I: a new flow-through pressure sensor with wire link and (b) prototype-II: prototype-I plus a telemetry chip and its receiver. All the devices were applied in C57BL/6J mice. Data are mean_SEM. Results: A high frequency response (>100 Hz) PU heparin saline-filled catheter was inserted into mouse left ventricle via right carotid artery and implanted, LV systolic pressure (LVSP), LVdP/dtmax, and LVdP/dtmin were recorded on day2, 3, 4, 5, and 7 in conscious mice. The hemodynamic values were consistent and comparable (139_4 mmHg, 16634_319, - 12283_184 mmHg/s, n¼5) to one recorded by a validated Pebax03 catheter (138_2mmHg, 16045_443 and -12112_357 mmHg/s, n¼9). Similar LV hemodynamic values were obtained with Prototype-I. The same LVP waveforms were synchronically recorded by Notocord wire and Senimed wireless software through prototype-II in anesthetized mice. Conclusion: An implantable flow-through LVP transmitter (prototype-I) is generated for LVP accurate assessment in conscious mice. The prototype-II needs a further improvement on data transmission bandwidth and signal coupling distance to its receiver for accurate monitoring of LVP in a freemoving mouse.
Resumo:
ABSTRACT: Transapical aortic valve replacement is an established technique performed in high-risk patients with symptomatic aortic valve stenosis and vascular disease contraindicating trans-vascular and trans-aortic procedures. The presence of a left ventricular apical diverticulum is a rare event and the treatment depends on dimensions and estimated risk of embolisation, rupture, or onset of ventricular arrhythmias. The diagnosis is based on standard cardiac imaging and symptoms are very rare. In this case report we illustrate our experience with a 81 years old female patient suffering from symptomatic aortic valve stenosis, respiratory disease, chronic renal failure and severe peripheral vascular disease (logistic euroscore: 42%), who successfully underwent a transapical 23 mm balloon-expandable stent-valve implantation through an apical diverticulum of the left ventricle. Intra-luminal thrombi were absent and during the same procedure were able to treat the valve disease and to successfully exclude the apical diverticulum without complications and through a mini thoracotomy. To the best of our knowledge, this is the first time that a transapical procedure is successfully performed through an apical diverticulum.