924 resultados para Learning objects repositories
Resumo:
Acompanha: Procedimento para o uso do Tracker como objeto de ensino, suas potencialidades e dificuldades para aprendizagem de física no ensino médio
Resumo:
Desde hace 6 años el grupo de investigación E-Virtual de laUniversidad de Medellín viene trabajando en la implementaciónde asignaturas bimodales en la Institución. En el 2009, con elapoyo de MEN, se implementó la modalidad a distancia conmetodología virtual en el modelo pedagógico de la Universidad.Estas nuevas experiencias llevaron al Grupo a cuestionarsesobre las características pedagógicas y didácticas a teneren cuenta cuando se combinan la educación presencial y lavirtual. Para ello se indagó con profesores y estudiantes sobresu percepción al respecto. Para la recolección de informaciónse combinaron técnicas cualitativas y cuantitativas, que hanarrojado interesantes resultados, entre ellos proceso deinducción, interacciones comunicativas, Objetos Virtuales deAprendizaje y uso de la plataforma virtual.En este artículo se darán a conocer algunos resultados de lainvestigación, cuáles han sido los aspectos positivos de estaexperiencia y cuáles son las áreas a mejorar.
Resumo:
This research deals with the use of a participatory design methodology to develop a repository of open educational resources, the Arcaz. Discusses key aspects of neutrality and determinism of technology within the context of Social Studies of Science and Technology and presents some concepts of critical theory of technology related to the democratic construction of technological artifacts. Discusses the philosophical heritage of the movements that led to the emergence of free software, open education and open educational resources and argues that participatory design share similar ideals. It presents concepts of human-computer interaction, interaction design and user centered design, important to enhance the user experience in information systems. It addresses the participatory design as a methodology that allows the democratic participation of users in the technological construction, promoting mutual learning and active voice for the participants. Develops a participatory design methodology adapted to the Arcaz context of use and provides the procedures for the meetings conducted to apply participatory design techniques to the repository and the results obtained. It concludes with a study of some of the interventions suggested in the system and orientations for future applications of participatory practices in the development of the repository and a list of best practices, focusing on ethical principles that should guide the participatory design.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, 2015.
Resumo:
El presente trabajo tiene como objetivo dar a conocer Objetos de Aprendizaje, como un recurso tecnológico, que sirva de soporte a la educación y que contribuya en la enseñanza de las Inecuaciones de primer grado. Para realizar este proyecto se han planteado cinco capítulos de desarrollo: En el capítulo uno se realiza una investigación bibliográfica donde se describe la Educación, orientándola hacia el constructivismo, que centra al estudiante como constructor de su conocimiento y la importancia de usar material didáctico apto para desarrollar sus habilidades. En el capítulo dos se desarrolla el tema de Inecuaciones de primer grado, dividiéndolo en cuatro subtemas: Inecuaciones de primer grado con una y dos incógnitas, intervalos de solución y sistemas de inecuaciones. En el capítulo tres se presenta un análisis a los recursos educativos de libre acceso en diferentes sitios web, dónde se evidencia el desarrollo de plataformas que buscan consolidar los aprendizajes. En el capítulo cuatro se desarrolla el diseño de los cuatro Objetos de Aprendizaje; a partir de su metodología para la estructuración; además se usará guías para su organización. Y finalmente en el capítulo cinco se aprecia el interés que producen los Objetos de Aprendizaje, en los estudiantes de Noveno de EGB. Permitiendo observar que este recurso fortalece el aprendizaje de forma divertida e interactiva; dando apertura al uso de instrumentos multimedia como material de autoformación.
Resumo:
We present the results of an implemented system for learning structural prototypes from grey-scale images. We show how to divide an object into subparts and how to encode the properties of these subparts and the relations between them. We discuss the importance of hierarchy and grouping in representing objects and show how a notion of visual similarities can be embedded in the description language. Finally we exhibit a learning algorithm that forms class models from the descriptions produced and uses these models to recognize new members of the class.
Resumo:
The recognition of 3-D objects from sequences of their 2-D views is modeled by a family of self-organizing neural architectures, called VIEWNET, that use View Information Encoded With NETworks. VIEWNET incorporates a preprocessor that generates a compressed but 2-D invariant representation of an image, a supervised incremental learning system that classifies the preprocessed representations into 2-D view categories whose outputs arc combined into 3-D invariant object categories, and a working memory that makes a 3-D object prediction by accumulating evidence from 3-D object category nodes as multiple 2-D views are experienced. The simplest VIEWNET achieves high recognition scores without the need to explicitly code the temporal order of 2-D views in working memory. Working memories are also discussed that save memory resources by implicitly coding temporal order in terms of the relative activity of 2-D view category nodes, rather than as explicit 2-D view transitions. Variants of the VIEWNET architecture may also be used for scene understanding by using a preprocessor and classifier that can determine both What objects are in a scene and Where they are located. The present VIEWNET preprocessor includes the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and suppresses image noise. This boundary segmentation is rendered invariant under 2-D translation, rotation, and dilation by use of a log-polar transform. The invariant spectra undergo Gaussian coarse coding to further reduce noise and 3-D foreshortening effects, and to increase generalization. These compressed codes are input into the classifier, a supervised learning system based on the fuzzy ARTMAP algorithm. Fuzzy ARTMAP learns 2-D view categories that are invariant under 2-D image translation, rotation, and dilation as well as 3-D image transformations that do not cause a predictive error. Evidence from sequence of 2-D view categories converges at 3-D object nodes that generate a response invariant under changes of 2-D view. These 3-D object nodes input to a working memory that accumulates evidence over time to improve object recognition. ln the simplest working memory, each occurrence (nonoccurrence) of a 2-D view category increases (decreases) the corresponding node's activity in working memory. The maximally active node is used to predict the 3-D object. Recognition is studied with noisy and clean image using slow and fast learning. Slow learning at the fuzzy ARTMAP map field is adapted to learn the conditional probability of the 3-D object given the selected 2-D view category. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of l28x128 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view and of up to 98.5% correct with three 2-D views. The properties of 2-D view and 3-D object category nodes are compared with those of cells in monkey inferotemporal cortex.
Resumo:
Esta investigación tiene como objetivo contribuir a mejorar la recuperación de información en la web relacionada con los sistemas de aprendizaje en línea.. Se proporciona una revisión del estado de la cuestión del área de interoperabilidad en sistemas distribuidos enfocados parcialmente al aprendizaje. Se detallan, tanto la motivación para el trabajo en interoperabilidad y su necesidad desde el punto de vista del consumidor y proveedor de información, como los diferentes componentes necesarios para garantizarla.. Este trabajo contribuye a mejorar la interoperabilidad en sistemas de gestión de aprendizaje en línea y facilita medios necesarios para conseguirlo: un lenguaje de búsqueda común, un vocabulario global, integración semántica y ranking. También se ofrecen soluciones para la mejora de la interoperabilidad de estas aplicaciones, facilitando su efectividad desde el punto de vista del consumidor y proveedor de información..
Resumo:
We studied how the integration of seen and felt tactile stimulation modulates somatosensory processing, and investigated whether visuotactile integration depends on temporal contiguity of stimulation, and its coherence with a pre-existing body representation. During training, participants viewed a rubber hand or a rubber object that was tapped either synchronously with stimulation of their own hand, or in an uncorrelated fashion. In a subsequent test phase, somatosensory event-related potentials (ERPs) were recorded to tactile stimulation of the left or right hand, to assess how tactile processing was affected by previous visuotactile experience during training. An enhanced somatosensory N140 component was elicited after synchronous, compared with uncorrelated, visuotactile training, irrespective of whether participants viewed a rubber hand or rubber object. This early effect of visuotactile integration on somatosensory processing is interpreted as a candidate electrophysiological correlate of the rubber hand illusion that is determined by temporal contiguity, but not by pre-existing body representations. ERPmodulations were observed beyond 200msec post-stimulus, suggesting an attentional bias induced by visuotactile training. These late modulations were absent when the stimulation of a rubber hand and the participant’s own hand was uncorrelated during training, suggesting that pre-existing body representations may affect later stages of tactile processing.
Resumo:
This project engages people with learning disabilities as co-researchers and co-designers in the development of multisensory interactive artworks, with the aim of making museums or heritage sites more interesting, meaningful, and fun. This article describes our explorations, within this context, of a range of technologies including squishy circuits, littleBits, and easy-build websites, and presents examples of objects created by the co-researchers such as “sensory boxes” and interactive buckets, baskets, and boots. Public engagement is an important part of the project and includes an annual public event and seminar day, a blog rich with photos and videos of the workshops, and an activities book to give people ideas for creating their own sensory explorations of museums and heritage sites.
Resumo:
This project engages people with learning disabilities to participate as co-researchers and explore museum interpretation through multisensory workshops using microcontrollers and sensors to enable alternative interactive visitor experiences in museums and heritage sites. This article describes how the project brings together artists, engineers, and experts in multimedia advocacy, as well as people with learning disabilities in the co-design of interactive multisensory objects that replicate or respond to objects of cultural significance in our national collections. Through a series of staged multi-sensory art and electronics workshops, people with learning disabilities explore how the different senses could be utilised to augment existing artefacts or create entirely new ones. The co-researchers employ multimedia advocacy tools to reflect on and to communicate their experiences and findings.
Resumo:
This project engages people with learning disabilities to participate as co-researchers and explore museum interpretation through multisensory workshops using microcontrollers and sensors to enable alternative interactive visitor experiences in museums and heritage sites. This article describes how the project brings together artists, engineers, and experts in multimedia advocacy, as well as people with learning disabilities in the co-design of interactive multisensory objects that replicate or respond to objects of cultural significance in our national collections. Through a series of staged multi-sensory art and electronics workshops, people with learning disabilities explore how the different senses could be utilised to augment existing artefacts or create entirely new ones. The co-researchers employ multimedia advocacy tools to reflect on and to communicate their experiences and findings.
Resumo:
Universities which set up online repositories for the management of learning and teaching resources commonly find that uptake is poor. Tutors are often reluctant to upload their materials to e-repositories, even though the same tutors are happy to upload resources to the virtual learning environment (e.g. Blackboard, Moodle, Sakai) and happy to upload their research papers to the university’s research publications repository. The paper reviews this phenomenon and suggests constructive ways in which tutors can be encouraged to engage with an e-repository. The authors have recently completed a major project “Developing Repositories at Worcester” which is part of a group of similar projects in the UK. The paper includes the feedback and the lessons learned from these projects, based on the publications and reports they have produced. They cover ways of embedding repository use into institutional working practice, and give examples of different types of repository designed to meet the needs of those using different kinds of learning and teaching resources. As well as this specific experience, the authors summarise some of the main findings from UK publications, in particular the December 2008 report of Joint Information Systems Committee: Good intentions: improving the evidence base in support of sharing learning materials and Online Innovation in Higher Education, Ron Cooke’s report to a UK government initiative on the future of Higher Education. The issues covered include the development of Web 2.0 style repositories rather than conventionally structured ones, the use of tags rather than metadata, the open resources initiative, the best use for conventional repositories, links to virtual learning environments, and the processes for the management and support of repositories within universities. In summary the paper presents an optimistic, constructive view of how to embed the use of e-repositories into the working practices of university tutors. Equally, the authors are aware of the considerable difficulties in making progress and are realistic about what can be achieved. The paper uses evidence and experience drawn from those working in this field to suggest a strategic vision in which the management of e-learning resources is productive, efficient and meets the needs of both tutors and their students.