770 resultados para Learning management systems
Resumo:
A cikkben a szerzők megvizsgálják a tudásmenedzsment komplex rendszerfejlesztési projektekben és az informatikai auditban játszott szerepét. Fő céljuk, hogy a tudásmenedzsment-rendszerek fejlesztéséhez kapcsolódó audit támogatására értékelési modellt készítsenek. Cikkükben megvizsgálják a tudásmenedzsmentnek az IT-auditban játszott általános szerepét, az auditban érintett tudásvagyon védelmének kérdését, a tudásmenedzsment-folyamatok szerepét a rendszerfejlesztésben (auditszempontból), a kontrollok implementálását, valamint a tudásmenedzsment és az IT-audittal kapcsolatos szabványok, módszertanok kapcsolatát. Az eredmények illusztrálására egy az Európai Unió 7. keretprogramjából finanszírozott nemzetközi projekt (GUIDE, IST–2003–507498) szolgál. ________________ Authors investigate the role of knowledge management in complex system development projects and IT audit. The primary goal is to provide an evaluation framework for an assessment of the development of special knowledge management solutions. On the other hand IT audit itself is a knowledge-dependent activity. The paper analyses the role of knowledge management in IT audit in general, the protection of knowledge assets during an audit, the role of knowledge management processes during system development (from audit point of view) and in the implementation of controls, the relationship of knowledge management with audit standards. Authors investigate the specialities of KM developments from audit point of view (particularly important aspects of audit, specific control objectives) A case study, based on experiences gained from GUIDE project (IST-2003-507498 funded by the European Commission’s 6th Framework Programme) illustrates the findings.
Resumo:
The Semantic Binary Data Model (SBM) is a viable alternative to the now-dominant relational data model. SBM would be especially advantageous for applications dealing with complex interrelated networks of objects provided that a robust efficient implementation can be achieved. This dissertation presents an implementation design method for SBM, algorithms, and their analytical and empirical evaluation. Our method allows building a robust and flexible database engine with a wider applicability range and improved performance. ^ Extensions to SBM are introduced and an implementation of these extensions is proposed that allows the database engine to efficiently support applications with a predefined set of queries. A New Record data structure is proposed. Trade-offs of employing Fact, Record and Bitmap Data structures for storing information in a semantic database are analyzed. ^ A clustering ID distribution algorithm and an efficient algorithm for object ID encoding are proposed. Mapping to an XML data model is analyzed and a new XML-based XSDL language facilitating interoperability of the system is defined. Solutions to issues associated with making the database engine multi-platform are presented. An improvement to the atomic update algorithm suitable for certain scenarios of database recovery is proposed. ^ Specific guidelines are devised for implementing a robust and well-performing database engine based on the extended Semantic Data Model. ^
Resumo:
The purpose of this paper is to explore the use of automated inventory management systems (IMS) and identify the stage of technology adoption for restaurants in Aruba. A case study analysis involving twelve members of the Aruba Gastronomic Association was conducted using a qualitative research design to gather information on approaches currently used as well as the reasons and perceptions managers/owners have for using or not using automated systems in their facilities. This is the first study conducted using the Aruba restaurant market. Therefore, the application of two technology adoption models was used to integrate critical factors relevant to the study. Major findings indicated the use of an automated IMS in restaurants is limited, thus underscoring the lack of adoption of technology in this area. The results also indicated that two major reasons that restaurants are not adopting IMS technology are budgetary constraints and service support. This study is imperative for two reasons: (1) the results of this study can be used as a comparison for future IMS adoption, not only for Aruba’s restaurant industry but also for other Caribbean destinations and the U.S., (2) this study also provides insight into the additional training and support help needed in hospitality technology services.
Resumo:
A myriad of computer management systems are available for the restaurant business. The author discusses all aspects of evaluating, purchasing, and using such systems for a restaurant operation.
Resumo:
Although there are more than 7,000 properties using lodging yield management systems (LYMSs), both practitioners and researchers alike have found it difficult to measure their success. Considerable research was performed in the 1980s to develop success measures for information systems in general. In this work the author develops success measures specifically for LYMSs.
Resumo:
The selected publications are focused on the relations between users, eGames and the educational context, and how they interact together, so that both learning and user performance are improved through feedback provision. A key part of this analysis is the identification of behavioural, anthropological patterns, so that users can be clustered based on their actions, and the steps taken in the system (e.g. social network, online community, or virtual campus). In doing so, we can analyse large data sets of information made by a broad user sample,which will provide more accurate statistical reports and readings. Furthermore, this research is focused on how users can be clustered based on individual and group behaviour, so that a personalized support through feedback is provided, and the personal learning process is improved as well as the group interaction. We take inputs from every person and from the group they belong to, cluster the contributions, find behavioural patterns and provide personalized feedback to the individual and the group, based on personal and group findings. And we do all this in the context of educational games integrated in learning communities and learning management systems. To carry out this research we design a set of research questions along the 10-year published work presented in this thesis. We ask if the users can be clustered together based on the inputs provided by them and their groups; if and how these data are useful to improve the learner performance and the group interaction; if and how feedback becomes a useful tool for such pedagogical goal; if and how eGames become a powerful context to deploy the pedagogical methodology and the various research methods and activities that make use of that feedback to encourage learning and interaction; if and how a game design and a learning design must be defined and implemented to achieve these objectives, and to facilitate the productive authoring and integration of eGames in pedagogical contexts and frameworks. We conclude that educational games are a resourceful tool to provide a user experience towards a better personalized learning performance and an enhance group interaction along the way. To do so, eGames, while integrated in an educational context, must follow a specific set of user and technical requirements, so that the playful context supports the pedagogical model underneath. We also conclude that, while playing, users can be clustered based on their personal behaviour and interaction with others, thanks to the pattern identification. Based on this information, a set of recommendations are provided Digital Anthropology and educational eGames 6 /216 to the user and the group in the form of personalized feedback, timely managed for an optimum impact on learning performance and group interaction level. In this research, Digital Anthropology is introduced as a concept at a late stage to provide a backbone across various academic fields including: Social Science, Cognitive Science, Behavioural Science, Educational games and, of course, Technology-enhance learning. Although just recently described as an evolution of traditional anthropology, this approach to digital behaviour and social structure facilitates the understanding amongst fields and a comprehensive view towards a combined approach. This research takes forward the already existing work and published research onusers and eGames for learning, and turns the focus onto the next step — the clustering of users based on their behaviour and offering proper, personalized feedback to the user based on that clustering, rather than just on isolated inputs from every user. Indeed, this pattern recognition in the described context of eGames in educational contexts, and towards the presented aim of personalized counselling to the user and the group through feedback, is something that has not been accomplished before.
Resumo:
The benefits of pavement management system when fully implemented are well known and the history of successful implementation is rich. Implementation occurs, for purposes of this paper, when the pavement management system is the critical component for making pavement decisions. This paper addresses the issues that act as barriers to full implementation of pavement management systems. Institutional barriers, not technical and financial barriers, are more commonly responsible for a pavement management systems falling short of full implementation. The paper groups these institutional issues into a general taxonomy. In general, more effort needs to be put forth by highway agencies to overcome institutional issues. Most agencies approach pavement management as a technical process, but more commonly, institutional issues become more problematic and thus require more attention paid to institutional issues. The paper concludes by summarizing the implementation process being taken by the Iowa Department of Transportation. The process was designed to overcome institutional barriers and facilitate the complete and full implementation of their pavement management system.
Resumo:
Abstract Purpose – The purpose of this paper is to present a case study regarding the deployment of a previously developed model for the integration of management systems (MSs). The case study is developed at a manufacturing site of an international enterprise. The implementation of this model in a real business environment is aimed at assessing its feasibility. Design/methodology/approach – The presented case study takes into account different management systems standards (MSSs) progressively implemented, along the years, independently. The implementation of the model was supported by the results obtained from an investigation performed according to a structured diagnosis that was conducted to collect information related to the organizational situation of the enterprise. Findings – The main findings are as follows: a robust integrated management system (IMS), objectively more lean, structured and manageable was found to be feasible; this study provided an holistic view of the enterprise’s global management; clarifications of job descriptions and boundaries of action and responsibilities were achieved; greater efficiency in the use of resources was attained; more coordinated management of the three pillars of sustainability – environmental, economic and social, as well as risks, providing confidence and added value to the company and interested parties was achieved. Originality/value – This case study is pioneering in Portugal in respect to the implementation, at the level of an industrial organization, of the model previously developed for the integration of individualized MSs. The case study provides new insights regarding the implementation of IMSs including the rationalization of several resources and elimination of several types of organizational waste leveraging gains of efficiency. Due to its intrinsic characteristics, the model is able to support, progressively, new or revised MSSs according to the principles of annex SL (normative) – proposals for MSSs – of the International Organization for Standardization and the International Electrotechnical Commission, that the industrial organization can adopt beyond the current ones.
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
In a principal-agent model we analyze the firm’s decision to adopt an informal or a standardized Environmental Management System (EMS). Our results are consistent with empirical evidence in several respects. A standardized EMS increases the internal control at the cost of introducing some degree of rigidity that entails an endogenous setup cost. Standardized systems are more prone to be adopted by big and well established firms and under tougher environmental policies. Firms with standardized EMS tend to devote more effort to abatement although this effort results in lower pollution only if public incentives are strong enough, suggesting a complementarity relationship between standardized EMS and public policies. Emission charges have both a marginal effect on abatement and a qualitative effect on the adoption decision that may induce a conflict between private and public interests. As a result of the combination of these two effects it can be optimal for the government to distort the tax in a specific way in order to push the firm to choose the socially optimal EMS. The introduction of standardized systems can result in win-win situations where firms, society and the environment get better off.
Resumo:
This study analyzes the manifestation of the dimensions of Entrepreneurial Orientation (EO) and Project Management Systems (PMS). We used a qualitative approach to conduct exploratory research through a study in literature and a pilot case in a software company. Data was collected from semi structured interviews, documents, and records on file, then triangulated and treated with content analysis. The model proposed for the relationship between the types of PMS (ad hoc, Classic PM, innovation, entrepreneurship/intrapreneurship) and the dimensions of EO (innovativeness, risk-taking, proactiveness, competitive aggressiveness, and autonomy), was partially corroborated by empirical studies. New studies are suggested to validate the applicability and setup of the model.
Resumo:
Potato is the most important food crop after wheat and rice. A changing climate, coupled with a heightened consumer awareness of how food is produced and legislative changes governing the usage of agrochemicals, means that alternative more integrated and sustainable approaches are needed for crop management practices. Bioprospecting in the Central Andean Highlands resulted in the isolation and in vitro screening of 600 bacterial isolates. The best performing isolates, under in vitro conditions, were field trialled in their home countries. Six of the isolates, Pseudomonas sp. R41805 (Bolivia), Pseudomonas palleroniana R43631 (Peru), Bacillus sp. R47065, R47131, Paenibacillus sp. B3a R49541, and Bacillus simplex M3-4 R49538 (Ecuador), showed significant increase in the yield of potato. Using – omic technologies (i.e. volatilomic, transcriptomic, proteomic and metabolomic), the influence of microbial isolates on plant defence responses was determined. Volatile organic compounds of bacterial isolates were identified using GC/MS. RT-qPCR analysis revealed the significant expression of Ethylene Response Factor 3 (ERF3) and the results of this study suggest that the dual inoculation of potato with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 may play a part in the activation of plant defence system via ERF3. The proteomic analysis by 2-DE study has shown that priming by Pseudomonas sp. R41805 can induce the expression of proteins related to photosynthesis and protein folding in in vitro potato plantlets. The metabolomics study has shown that the total glycoalkaloid (TGA) content of greenhouse-grown potato tubers following inoculation with Pseudomonas sp. R41805 did not exceed the acceptable safety limit (200 mg kg-1 FW). As a result of this study, a number of bacteria have been identified with commercial potential that may offer sustainable alternatives in both Andean and European agricultural settings.
Resumo:
Knowledge-Based Management Systems enable new ways to process and analyse knowledge to gain better insights to solve a problem and aid in decision making. In the police force such systems provide a solution for enhancing operations and improving client administration in terms of knowledge management. The main objectives of every police officer is to ensure the security of life and property, promote lawfulness, and avert and distinguish wrongdoing. The administration of knowledge and information is an essential part of policing, and the police ought to be proactive in directing both explicit and implicit knowledge, whilst adding to their abilities in knowledge sharing. In this paper the potential for a knowledge based system for the Mauritius police was analysed, and recommendations were also made, based on requirements captured from interviews with several long standing officers, and surveying of previous works in the area.
Resumo:
2016