953 resultados para Leak locations
Resumo:
This paper examines Myanmar's industrial policy, structure, and locations during the transition from a centrally planned economy to a market-oriented one throughout the 1990s and up to the present. After the military government assumed power in 1988, it abandoned the socialist centrally planned economic system and began instituting a market-oriented one through a series of liberalization and deregulation measures, although most of which have stalled since 1997 and remain half-way implemented. Against this background, it is rather surprising that the impact of these new policies of international trade, finance, regulations, licensing and ownership requirements on industrial structure and location in Myanmar has been poorly documented and examined to date. Some key issues to understanding the impact and effectiveness of the market-oriented policies during the last two decades in Myanmar remain to be answered: Have the new trade and industrial policies changed the industrial structure and organizational behavior in Myanmar? Have they improved the performance of Myanmar's industrial sector? Have they had any impact on industry location in Myanmar? This paper reviews the series of liberalization programs implemented under the military government?the State Law and Order Restoration Council (SLORC) and the State Peace and Development Council (SPDC)?and assesses their impact on industrial structure and its spatial distribution.
Resumo:
This paper explores the interaction between upstream firms and downstream firms in a two-region general equilibrium model. In many countries, lower tariff rates are set for intermediate manufactured goods and higher tariff rates are set for final manufactured goods. The derived results imply that such settings of tariff rates tend to preserve a symmetric spread of upstream and downstream firms, and continuing tariff reduction may cause core-periphery structures. In the case in which the circular causality between upstream and downstream firms is focused as agglomeration forces, the present model is fully solved. Thus, we find that (1) the present model displays, at most, three interior steady states, (2) when the asymmetric steady-states exist, they are unstable and (3) location displays hysteresis when the transport costs of intermediate manufactured goods are sufficiently high.
Resumo:
Despite continuous efforts to improve the coverage, the access to electricity remains insufficient in many developing countries, particularly in geographically challenged locations, due mostly to the high cost of grid extension. To rigorously investigate the effectiveness of solar products as an alternative in remote areas, we conducted a randomized controlled trial in river islands of northern Bangladesh where no grid-based electricity is available. We found that solar lanterns significantly increased home study hours among schooled children, especially in the night and before exams. School attendance rate also initially increases due to the provision of solar lamps, although such effects fade away over time. The increased study time and initial school attendance rate, however, did not improve children's exam results. We also found marginal improvements on health-related indicators, such as eye redness and irritation, but negligible impacts on respiratory indicators. Households that received solar lanterns substituted the traditional lighting sources with modern technology, leading to a significant decrease in annual biomass fuel consumptions, particularly kerosene. Finally, treated households showed a greater self-reported willingness to purchase solar products compared with the control group.
Resumo:
In this paper the daily temporal and spatial behavior of electric vehicles (EVs) is modelled using an activity-based (ActBM) microsimulation model for Flanders region (Belgium). Assuming that all EVs are completely charged at the beginning of the day, this mobility model is used to determine the percentage of Flemish vehicles that cannot cover their programmed daily trips and need to be recharged during the day. Assuming a variable electricity price, an optimization algorithm determines when and where EVs can be recharged at minimum cost for their owners. This optimization takes into account the individual mobility constraint for each vehicle, as they can only be charged when the car is stopped and the owner is performing an activity. From this information, the aggregated electric demand for Flanders is obtained, identifying the most overloaded areas at the critical hours. Finally it is also analyzed what activities EV owners are underway during their recharging period. From this analysis, different actions for public charging point deployment in different areas and for different activities are proposed.
Resumo:
Social pressure exerted by urban development, the increase in erosion on many coastal stretches, and the rise in sea level due to climate change over the last few decades have led governments to increase investment in coastal protection. In turn, a reduction in costs and increases in ease of construction and rate of implementation have led to sand-filled geotextile elements, such as bags, tubes, and containers, becoming an alternative or supplement to traditional coastal defence materials, such as rubble mounds, concrete, and so on. Not all coastal zones are appropriate for sand-filled geotextile structures as coastal defences. This article analyses suitable zones for locating geotextile bag revetments to protect coasts from storm erosion and concludes that the least suitable zones are the surf zone (on an open coast and on a slightly protected coast) and deep water (on an open coast), except if a suitable reinforcement is carried out when the demand makes it necessary this build this kind of defence.
Resumo:
Multi-junction solar cells are widely used in high-concentration photovoltaic systems (HCPV) attaining the highest efficiencies in photovoltaic energy generation. This technology is more dependent on the spectral variations of the impinging Direct Normal Irradiance (DNI) than conventional photovoltaics based on silicon solar cells and consequently demands a deeper knowledge of the solar resource characteristics. This article explores the capabilities of spectral indexes, namely, spectral matching ratios (SMR), to spectrally characterize the annual irradiation reaching a particular location on the Earth and to provide the necessary information for the spectral optimization of a MJ solar cell in that location as a starting point for CPV module spectral tuning. Additionally, the relationship between such indexes and the atmosphere parameters, such as the aerosol optical depth (AOD), precipitable water (PW), and air mass (AM), is discussed using radiative transfer models such as SMARTS to generate the spectrally-resolved DNI. The network of ground-based sun and sky-scanning radiometers AERONET (AErosol RObotic NETwork) is exploited to obtain the atmosphere parameters for a selected bunch of 34 sites worldwide. Finally, the SMR indexes are obtained for every location, and a comparative analysis is carried out for four architectures of triple junction solar cells, covering both lattice match and metamorphic technologies. The differences found among cell technologies are much less significant than among locations.
Resumo:
The dose-limiting toxicity of interleukin-2 (IL-2) and immunotoxin (IT) therapy in humans is vascular leak syndrome (VLS). VLS has a complex etiology involving damage to vascular endothelial cells (ECs), extravasation of fluids and proteins, interstitial edema, and organ failure. IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA), and other toxins, damage human ECs in vitro and in vivo. Damage to ECs may initiate VLS; if this damage could be avoided without losing the efficacy of ITs or IL-2, larger doses could be administered. In this paper, we provide evidence that a three amino acid sequence motif, (x)D(y), in toxins and IL-2 damages ECs. Thus, when peptides from RTA or IL-2 containing this sequence motif are coupled to mouse IgG, they bind to and damage ECs both in vitro and, in the case of RTA, in vivo. In contrast, the same peptides with a deleted or mutated sequence do not. Furthermore, the peptide from RTA attached to mouse IgG can block the binding of intact RTA to ECs in vitro and vice versa. In addition, RTA, a fragment of Pseudomonas exotoxin A (PE38-lys), and fibronectin also block the binding of the mouse IgG-RTA peptide to ECs, suggesting that an (x)D(y) motif is exposed on all three molecules. Our results suggest that deletions or mutations in this sequence or the use of nondamaging blocking peptides may increase the therapeutic index of both IL-2, as well as ITs prepared with a variety of plant or bacterial toxins.
Resumo:
A K+ channel gene has been cloned from Drosophila melanogaster by complementation in Saccharomyces cerevisiae cells defective for K+ uptake. Naturally expressed in the neuromuscular tissues of adult flies, this gene confers K+ transport capacity on yeast cells when heterologously expressed. In Xenopus laevis oocytes, expression yields an ungated K+-selective current whose attributes resemble the “leak” conductance thought to mediate the resting potential of vertebrate myelinated neurons but whose molecular nature has long remained elusive. The predicted protein has two pore (P) domains and four membrane-spanning helices and is a member of a newly recognized K+ channel family. Expression of the channel in flies and yeast cells makes feasible studies of structure and in vivo function using genetic approaches that are not possible in higher animals.
Induction of Exocytosis from Permeabilized Mast Cells by the Guanosine Triphosphatases Rac and Cdc42
Resumo:
We applied recombinant forms of the Rho-related small guanosine triphosphatases (GTPases) Rac2 and Cdc42/G25K to permeabilized mast cells to test their ability to regulate exocytotic secretion. Mast cells permeabilized with streptolysin-O leak soluble (cytosol) proteins over a period of 5 min and become refractory to stimulation by Ca2+ and guanosine triphosphate (GTP)γS over about 20–30 min. This loss of sensitivity is likely to be due to loss of key regulatory proteins that are normally tethered at intracellular locations. Exogenous proteins that retard this loss of sensitivity to stimulation may be similar, if not identical, to those secretory regulators that are lost. Recombinant Rac and Cdc42/G25K, preactivated by binding GTPγS, retard the loss of sensitivity (run-down) and, more importantly, enable secretion to be stimulated by Ca2+ alone. Investigation of the concentration dependence of each of these two GTPases applied individually to the permeabilized cells, and of Cdc42/G25K applied in the presence of an optimal concentration of Rac2, has provided evidence for a shared effector pathway and also a second effector pathway activated by Cdc42/G25K alone. Dominant negative mutant (N17) forms of Rac2 and Cdc42/G25K inhibit secretion induced by Ca2+ and GTPγS. Our data suggest that Rac2 and Cdc42 should be considered as candidates for GE, GTPases that mediate exocytosis in cells of hematopoeitic origin.
Resumo:
Patterns in sequences of amino acid hydrophobic free energies predict secondary structures in proteins. In protein folding, matches in hydrophobic free energy statistical wavelengths appear to contribute to selective aggregation of secondary structures in “hydrophobic zippers.” In a similar setting, the use of Fourier analysis to characterize the dominant statistical wavelengths of peptide ligands’ and receptor proteins’ hydrophobic modes to predict such matches has been limited by the aliasing and end effects of short peptide lengths, as well as the broad-band, mode multiplicity of many of their frequency (power) spectra. In addition, the sequence locations of the matching modes are lost in this transformation. We make new use of three techniques to address these difficulties: (i) eigenfunction construction from the linear decomposition of the lagged covariance matrices of the ligands and receptors as hydrophobic free energy sequences; (ii) maximum entropy, complex poles power spectra, which select the dominant modes of the hydrophobic free energy sequences or their eigenfunctions; and (iii) discrete, best bases, trigonometric wavelet transformations, which confirm the dominant spectral frequencies of the eigenfunctions and locate them as (absolute valued) moduli in the peptide or receptor sequence. The leading eigenfunction of the covariance matrix of a transmembrane receptor sequence locates the same transmembrane segments seen in n-block-averaged hydropathy plots while leaving the remaining hydrophobic modes unsmoothed and available for further analyses as secondary eigenfunctions. In these receptor eigenfunctions, we find a set of statistical wavelength matches between peptide ligands and their G-protein and tyrosine kinase coupled receptors, ranging across examples from 13.10 amino acids in acid fibroblast growth factor to 2.18 residues in corticotropin releasing factor. We find that the wavelet-located receptor modes in the extracellular loops are compatible with studies of receptor chimeric exchanges and point mutations. A nonbinding corticotropin-releasing factor receptor mutant is shown to have lost the signatory mode common to the normal receptor and its ligand. Hydrophobic free energy eigenfunctions and their transformations offer new quantitative physical homologies in database searches for peptide-receptor matches.
Resumo:
Functional anatomical and single-unit recording studies indicate that a set of neural signals in parietal and frontal cortex mediates the covert allocation of attention to visual locations, as originally proposed by psychological studies. This frontoparietal network is the source of a location bias that interacts with extrastriate regions of the ventral visual system during object analysis to enhance visual processing. The frontoparietal network is not exclusively related to visual attention, but may coincide or overlap with regions involved in oculomotor processing. The relationship between attention and eye movement processes is discussed at the psychological, functional anatomical, and cellular level of analysis.
Resumo:
Remineralization of organic matter in reactive marine sediments releases nutrients and dissolved organic matter (DOM) into the ocean. Here we focused on the molecular-level characterization of DOM by high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in sediment pore waters and bottom waters from contrasting redox regimes in the northern Black Sea with particular emphasis on nitrogen-bearing compounds to derive an improved understanding of the molecular transformations involved in nitrogen release. The number of nitrogen-bearing molecules is generally higher in pore waters than in bottom waters. This suggests intensified degradation of nitrogen-bearing precursor molecules such as proteins in anoxic sediments: No significant difference was observed between sediments deposited under oxic vs anoxic conditions (average O/C ratios of 0.55) suggesting that the different organic matter quality induced by contrasting redox conditions does not impact protein diagenesis in the subseafloor. Compounds in the pore waters were on average larger, less oxygenated, and had a higher number of unsaturations. Applying a mathematical model, we could show that the assemblages of nitrogen-bearing molecular formulas are potential products of proteinaceous material that was transformed by the following reactions: (a) hydrolysis and deamination, both reducing the molecular size and nitrogen content of the products and intermediates; (b) oxidation and hydration of the intermediates; and (c) methylation and dehydration.