993 resultados para Lattice theory
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
We study the dynamical properties of the RZ-DPSK encoded sequences, focusing on the instabilities in the soliton train leading to the distortions of the information transmitted. The problem is reformulated within the framework of complex Toda chain model which allows one to carry out the simplified description of the optical soliton dynamics. We elucidate how the bit composition of the pattern affects the initial (linear) stage of the train dynamics and explain the general mechanisms of the appearance of unstable collective soliton modes. Then we discuss the nonlinear regime using asymptotic properties of the pulse stream at large propagation distances and analyze the dynamical behavior of the train classifying different scenarios for the pattern instabilities. Both approaches are based on the machinery of Hermitian and non-Hermitian lattice analysis. © 2010 IEEE.
Resumo:
We determine numerically the single-particle and the two-particle spectrum of the three-state quantum Potts model on a lattice by using the density matrix renormalization group method, and extract information on the asymptotic (small momentum) S-matrix of the quasiparticles. The low energy part of the finite size spectrum can be understood in terms of a simple effective model introduced in a previous work, and is consistent with an asymptotic S-matrix of an exchange form below a momentum scale p*. This scale appears to vanish faster than the Compton scale, mc, as one approaches the critical point, suggesting that a dangerously irrelevant operator may be responsible for the behaviour observed on the lattice.
Resumo:
Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.
Resumo:
The use of InGaAs metamorphic buffer layers (MBLs) to facilitate the growth of lattice-mismatched heterostructures constitutes an attractive approach to developing long-wavelength semiconductor lasers on GaAs substrates, since they offer the improved carrier and optical confinement associated with GaAs-based materials. We present a theoretical study of GaAs-based 1.3 and 1.55 μm (Al)InGaAs quantum well (QW) lasers grown on InGaAs MBLs. We demonstrate that optimised 1.3 μm metamorphic devices offer low threshold current densities and high differential gain, which compare favourably with InP-based devices. Overall, our analysis highlights and quantifies the potential of metamorphic QWs for the development of GaAs-based long-wavelength semiconductor lasers, and also provides guidelines for the design of optimised devices.
Resumo:
Women with a disability continue to experience social oppression and domestic violence as a consequence of gender and disability dimensions. Current explanations of domestic violence and disability inadequately explain several features that lead women who have a disability to experience violent situations. This article incorporates both disability and material feminist theory as an alternative explanation to the dominant approaches (psychological and sociological traditions) of conceptualising domestic violence. This paper is informed by a study which was concerned with examining the nature and perceptions of violence against women with a physical impairment. The emerging analytical framework integrating material feminist interpretations and disability theory provided a basis for exploring gender and disability dimensions. Insight was also provided by the women who identified as having a disability in the study and who explained domestic violence in terms of a gendered and disabling experience. The article argues that material feminist interpretations and disability theory, with their emphasis on gender relations, disablism and poverty, should be used as an alternative tool for exploring the nature and consequences of violence against women with a disability.
Resumo:
This study develops a life-cycle model where investors make investment decisions in a realistic environment. Model results show that personal illiquid projects (housing and children), fixed costs (once-off/per-period participation costs plus variable/fixed transaction costs) and endogenous risky human capital (with permanent, transitory and disastrous shocks) together are able to address both the non-participation puzzle and the age-effects puzzle. Empirical implications of the model are examined using Heckman’s two-step method with the latest five Surveys of Consumer Finance (SCF). Regression results show that liquidity, informational cost and human capital are indeed the major determinants of participation and asset allocation decisions at different stages of an investor’s life.