989 resultados para Lattice gauge theories, Spin chains
Resumo:
Ground state magnetic properties are studied by incorporating the super-exchange interaction (J(se)) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (J(se)) and also depends on the number of (d-) electrons (N-d). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N-d). Also the density of d electrons at each site depends on the value of J and J(se).
Resumo:
Besides the Kondo effect observed in dilute magnetic alloys, the Cr-doped perovskite manganate compounds La0.7 Ca0.3 Mn1-x Crx O3 also exhibit Kondo effect and spin-glass freezing in a certain composition range. An extensive investigation for the La0.7 Ca0.3 Mn1-x Crx O3 (x=0.01, 0.05, 0.10, 0.3, 0.6, and 1.0) system on the magnetization and ac susceptibility, the resistivity and magnetoresistance, as well as the thermal conductivity is done at low temperature. The spin-glass behavior has been confirmed for these compounds with x=0.05, 0.1, and 0.3. For temperatures above Tf (the spin-glass freezing temperature) a Curie-Weiss law is obeyed. The paramagnetic Curie temperature θ is dependent on Cr doping. Below Tf there exists a Kondo minimum in the resistivity. Colossal magnetoresistance has been observed in this system with Cr concentration up to x=0.6. We suppose that the substitution of Mn with Cr dilutes Mn ions and changes the long-range ferromagnetic order of La0.7 Ca0.3 MnO3. These behaviors demonstrate that short-range ferromagnetic correlation and fluctuation exist among Mn spins far above Tf. Furthermore, these interactions are a precursor of the cooperative freezing at Tf. The "double bumps" feature in the resistivity-temperature curve is observed in compounds with x=0.05 and 0.1. The phonon scattering is enhanced at low temperatures, where the second peak of double bumps comes out. The results indicate that the spin-cluster effect and lattice deformation induce Kondo effect, spin-glass freezing, and strong phonon scattering in mixed perovskite La0.7 Ca0.3 Mn1-x Crx O3. © 2005 American Institute of Physics.
Resumo:
Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J(3) anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.
Resumo:
The decomposition of Spin(c)(4) gauge potential in terms of the Dirac 4-spinor is investigated, where an important characterizing equation Delta A(mu) = -lambda A(mu) has been discovered. Here, lambda is the vacuum expectation value of the spinor field, lambda = parallel to Phi parallel to(2), and A(mu) the twisting U(1) potential. It is found that when), takes constant values, the characterizing equation becomes an eigenvalue problem of the Laplacian operator. It provides a revenue to determine the modulus of the spinor field by using the Laplacian spectral theory. The above study could be useful in determining the spinor field and twisting potential in the Seiberg-Witten equations. Moreover, topological characteristic numbers of instantons in the self-dual sub-space are also discussed.
Resumo:
Duality is investigated for higher spin (s ≥ 2), free, massless, bosonic gauge fields. We show how the dual formulations can be derived from a common "parent", first-order action. This goes beyond most of the previous treatments where higher-spin duality was investigated at the level of the equations of motion only. In D = 4 spacetime dimensions, the dual theories turn out to be described by the same Pauli-Fierz (s = 2) or Fronsdal (s ≥ 3) action (as it is the case for spin 1). In the particular s = 2 D = 5 case, the Pauli-Fierz action and the Curtright action are shown to be related through duality. A crucial ingredient of the analysis is given by the first-order, gauge-like, reformulation of higher spin theories due to Vasiliev. © SISSA/ISAS 2003.
Resumo:
Using BRST-cohomological techniques, we analyze the consistent deformations of theories describing free tensor gauge fields whose symmetries are represented by Young tableaux made of two columns of equal length p, p > 1. Under the assumptions of locality and Poincaré invariance, we find that there is no consistent deformation of these theories that non-trivially modifies the gauge algebra and/or the gauge transformations. Adding the requirement that the deformation contains no more than two derivatives, the only possible deformation is a cosmological-constant-like term. © SISSA/ISAS 2004.
Resumo:
The problem of constructing consistent parity-violating interactions for spin-3 gauge fields is considered in Minkowski space. Under the assumptions of locality, Poincaré invariance, and parity noninvariance, we classify all the nontrivial perturbative deformations of the Abelian gauge algebra. In space-time dimensions n=3 and n=5, deformations of the free theory are obtained which make the gauge algebra non-Abelian and give rise to nontrivial cubic vertices in the Lagrangian, at first order in the deformation parameter g. At second order in g, consistency conditions are obtained which the five-dimensional vertex obeys, but which rule out the n=3 candidate. Moreover, in the five-dimensional first-order deformation case, the gauge transformations are modified by a new term which involves the second de Wit-Freedman connection in a simple and suggestive way. © 2006 The American Physical Society.
Resumo:
We study the spin-1 model on a triangular lattice in the presence of a uniaxial anisotropy field using a cluster mean-field (CMF) approach. The interplay among antiferromagnetic exchange, lattice geometry, and anisotropy forces Gutzwiller mean-field approaches to fail in a certain region of the phase diagram. There, the CMF method yields two supersolid phases compatible with those present in the spin-1/2 XXZ model onto which the spin-1 system maps. Between these two supersolid phases, the three-sublattice order is broken and the results of the CMF approach depend heavily on the geometry and size of the cluster. We discuss the possible presence of a spin liquid in this region.
Resumo:
A ~si MAS NMR study of spin-lattice relaxation behaviour
in paramagnetic-doped crystalline silicates was undertaken,
using synthetic magnesium orthosilicate (forsterite) and
synthetic zinc orthosilicate (willemite) doped with 0.1% to
20% of Co(II), Ni(II), or CU(II), as experimental systems.
All of the samples studied exhibited a longitudinal
magnetization return to the Boltzmann distribution of nuclear
spin states which followed a stretched-exponential function of
time:
Y=exp [- (tjTn) n], O
Resumo:
The present thesis deals with the studies on certain aspects of pathological higher field theories .It brings to light some new abnormalities and new samples of abnormal theories and also puts forward a novel approach towards the construction of trouble free theories
Resumo:
We study the orientational ordering on the surface of a sphere using Monte Carlo and Brownian dynamics simulations of rods interacting with an anisotropic potential. We restrict the orientations to the local tangent plane of the spherical surface and fix the position of each rod to be at a discrete point on the spherical surface. On the surface of a sphere, orientational ordering cannot be perfectly nematic due to the inevitable presence of defects. We find that the ground state of four +1/2 point defects is stable across a broad range of temperatures. We investigate the transition from disordered to ordered phase by decreasing the temperature and find a very smooth transition. We use fluctuations of the local directors to estimate the Frank elastic constant on the surface of a sphere and compare it to the planar case. We observe subdiffusive behavior in the mean square displacement of the defect cores and estimate their diffusion constants.
Resumo:
A reply to the comment of S. Romano, Phys. Rev. E 2015 on our previous paper is provided.