969 resultados para Late-latency auditory evoked potentials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are several electrophysiological systems available commercially. Usually, control groups are required to compare their results, due to the differences between display types. Our aim was to examine the differences between CRT and LCD/TFT stimulators used in pattern VEP responses performed according to the ISCEV standards. We also aimed to check different contrast values toward thresholds. In order to obtain more precise results, we intended to measure the intensity and temporal response characteristics of the monitors with photometric methods. To record VEP signals, a Roland RetiPort electrophysiological system was used. The pattern VEP tests were carried out according to ISCEV protocols on a CRT and a TFT monitor consecutively. Achromatic checkerboard pattern was used at three different contrast levels (maximal, 75, 25%) using 1A degrees and 15` check sizes. Both CRT and TFT displays were luminance and contrast matched, according to the gamma functions based on measurements at several DAC values. Monitor-specific luminance parameters were measured by means of spectroradiometric instruments. Temporal differences between the displays` electronic and radiometric signals were measured with a device specifically built for the purpose. We tested six healthy control subjects with visual acuity of at least 20/20. The tests were performed on each subject three times on different days. We found significant temporal differences between the CRT and the LCD monitors at all contrast levels and spatial frequencies. In average, the latency times were 9.0 ms (+/- 3.3 ms) longer with the TFT stimulator. This value is in accordance with the average of the measured TFT input-output temporal difference values (10.1 +/- A 2.2 ms). According to our findings, measuring the temporal parameters of the TFT monitor with an adequately calibrated measurement setup and correcting the VEP data with the resulting values, the VEP signals obtained with different display types can be transformed to be comparable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local anesthetic efficacy of tramadol has been reported following intradermal application. Our aim was to investigate the effect of perineural tramadol as the sole analgesic in two pain models. Male Wistar rats (280-380 g; N = 5/group) were used in these experiments. A neurostimulation-guided sciatic nerve block was performed and 2% lidocaine or tramadol (1.25 and 5 mg) was perineurally injected in two different animal pain models. In the flinching behavior test, the number of flinches was evaluated and in the plantar incision model, mechanical and heat thresholds were measured. Motor effects of lidocaine and tramadol were quantified and a motor block score elaborated. Tramadol, 1.25 mg, completely blocked the first and reduced the second phase of the flinching behavior test. In the plantar incision model, tramadol (1.25 mg) increased both paw withdrawal latency in response to radiant heat (8.3 +/- 1.1, 12.7 +/- 1.8, 8.4 +/- 0.8, and 11.1 +/- 3.3 s) and mechanical threshold in response to von Frey filaments (459 +/- 82.8, 447.5 +/- 91.7, 320.1 +/- 120, 126.43 +/- 92.8 mN) at 5, 15, 30, and 60 min, respectively. Sham block or contralateral sciatic nerve block did not differ from perineural saline injection throughout the study in either model. The effect of tramadol was not antagonized by intraperitoneal naloxone. High dose tramadol (5 mg) blocked motor function as well as 2% lidocaine. In conclusion, tramadol blocks nociception and motor function in vivo similar to local anesthetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To describe the Brainstem Auditory Evoked Potential (BAEP) results of full-term small-for-gestational-age newborns, comparing them to the results of full-term appropriate-for-gestational-age newborns, in order to verify whether the small-for-gestational-age condition is a risk indicator for retrocochlear hearing impairment. METHODS: This multicentric prospective cross-sectional study assessed 86 full-term newborns - 47 small- (Study Group) and 39 appropriate-for-gestational-age (Control Group - of both genders, with ages between 2 and 12 days. Newborns with presence of transient evoked otoacoustic emissions and type A tympanometry were included in the study. Quantitative analysis was based on the mean and standard deviation of the absolute latencies of waves I, III and V and interpeak intervals I-III, III-V and I-V, for each group. For qualitative analysis, the BAEP results were classified as normal or altered by analyzing these data considering the age range of the newborn at the time of testing. RESULTS: In the Study Group, nine of the 18 (38%) subjects with altered BAEP results had the condition of small-for-gestational-age as the only risk factor for hearing impairments. In the Control Group, seven (18%) had altered results. Female subjects from the Study Group tended to present more central alterations. In the Control Group, the male group tended to have more alterations. CONCLUSION: Full-term children born small or appropriate for gestational age might present transitory or permanent central hearing impairments, regardless of the presence of risk indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using transcranial magnetic stimulation and skin conductance responses, we sought to clarify if, and to what extent, emotional experiences of different valences and intensity activate the hand-motor system and the associated corticospinal tract. For that purpose, we applied a newly developed method to evoke strong emotional experiences by the simultaneous presentation of musical and pictorial stimuli of congruent emotional valence. We uncovered enhanced motor-evoked potentials, irrespective of valence, during the simultaneous presentation of emotional music and picture stimuli (Combined conditions) compared with the single presentation of the two modalities (Picture/Music conditions). In contrast, vegetative arousal was enhanced during both the Combined and Music conditions, compared with the Picture conditions, again irrespective of emotional valence. These findings strongly indicate that arousal is a necessary, but not sufficient, prerequisite for triggering the motor system of the brain. We offer a potential explanation for this discrepant, but intriguing, finding in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steady-state visual evoked potentials (SSVEPs) were recorded from the scalp of human subjects who were cued to attend to a rapid sequence of alphanumeric characters presented to one visual half-field while ignoring a concurrent sequence of characters in the opposite half-field. These two-character sequences were each superimposed upon a small square background that was flickered at a rate of 8.6 Hz in one half-field and 12 Hz in the other half-field. The amplitude of the frequency-coded SSVEP elicited by either of the task-irrelevant flickering backgrounds was significantly enlarged when attention was focused upon the character sequence at the same location. This amplitude enhancement with attention was most prominent over occipital-temporal scalp areas of the right cerebral hemisphere regardless of the visual field of stimulation. These findings indicate that the SSVEP reflects an enhancement of neural responses to all stimuli that fall within the "spotlight" of spatial attention, whether or not the stimuli are task-relevant. Recordings of the SSVEP provide a new approach for studying the neural mechanisms and functional properties of selective attention to multi-element visual displays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introdução: O implante coclear (IC) amplamente aceito como forma de intervenção e (re) habilitação nas perdas auditivas severas e profundas nas diversas faixas etárias. Contudo observa-se no usuário do IC unilateral queixas como localização e compreensão sonora em meio ao ruído, gerado pelo padrão anormal de estimulação sensorial. A fim de fornecer os benefícios da audição binaural, é preconizado a estimulação bilateral, seja por meio do IC bilateral ou com a adaptação de um aparelho de amplificação sonora individual (AASI) contralateralmente ao IC. Esta última condição é referida como estimulação bimodal, quando temos, concomitantemente dois modos de estimulação: Elétrica (IC) e acústica (AASI). Não há dados suficientes na literatura voltados à população infantil que esclareça ou demonstre o desenvolvimento do córtex auditivo na audição bimodal. Ressalta-se que não foram encontrados estudos em crianças. Objetivo: Caracterizar o PEAC complexo P1, N1 P2 em usuários da estimulação bimodal e verificar se há correlação com testes de percepção de fala. Metodologia: Estudo descritivo de séries de casos, com a realização do PEAC em cinco crianças usuárias da estimulação bimodal, a partir da metodologia proposta por Ventura (2008) utilizando o sistema Smart EP USB Jr da Intelligent Hearing Systems. Foi utilizado o som de fala /da/, apresentado em campo livre. O exame será realizado em três situações: Somente IC, IC e AASI e somente AASI. A análise dos dados dos potenciais corticais foi realizada após a marcação da presença ou ausência dos componentes do complexo P1-N1-P2 por dois juízes com experiência em potenciais evocados. Resultados: Foi obtida a captação do PEAC em todas as crianças em todas as situações de teste, além do que foi possível observar a correlação destes com os testes de percepção auditiva da fala. Foi possível verificar que o registro dos PEAC é um procedimento viável para a avaliação da criança com estimulação bimodal, porém, ainda não há dados suficientes quanto a utilização deste para a avaliação e indicação do IC bilateral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introdução: Crianças com transtorno fonológico (TF) apresentam dificuldade na percepção de fala, em processar estímulos acústicos quando apresentados de forma rápida e em sequência. A percepção dos sons complexos da fala, dependem da integridade no processo de codificação analisado pelo Sistema Nervoso Auditivo. Por meio do Potencial Evocado Auditivo de Tronco Encefálico com estímulo complexo (PEATEc) é possível investigar a representação neural dos sons em níveis corticais e obter informações diretas sobre como a estrutura do som da sílaba falada é codificada no sistema auditivo. Porém, acredita-se que esse potencial sofre interferências tanto de processos bottom-up quanto top-down, o que não se sabe é quanto e como cada um desses processos modifica as respostas do PEATEc. Uma das formas de investigar a real influência dos aspectos top-down e bottom-up nos resultados do PEATEc é estimulando separadamente esses dois processos por meio do treinamento auditivo e da terapia fonoaudiológica. Objetivo: Verificar o impacto da estimulação sensorial (processamento bottom-up) e cognitiva (processamento top-down), separadamente, nos diferentes domínios da resposta eletrofisiológica do PEATEc. Método: Participaram deste estudo 11 crianças diagnosticadas com TF, com idades entre 7 e 10:11, submetidas a avaliação comportamental e eletrofisiológica e então dividas nos grupos Bottom-up (B-U) (N=6) e Top-down T-D (N=5). A estimulação bottom-up foi voltada ao treinamento das habilidades sensoriais, através de softwares de computador. A estimulação top-down foi realizada por meio de tarefas para estimular as habilidades cognitiva por meio do Programa de Estimulação Fonoaudiológica (PEF). Ambas as estimulações foram aplicadas uma vez por semana, num período de aproximadamente 45 minutos por 12 semanas. Resultados: O grupo B-U apresentou melhoras em relação aos domínios onset e harmônicos e no valor da pontuação do escore após ser submetido à estimulação bottom-up. Por sua vez, após serem submetidos à estimulação top-down, o grupo T-D apresentou melhoras em relação aos domínios onset, espectro-temporal, fronteiras do envelope e harmônicos e para os valores da pontuação do escore. Conclusão: Diante dos resultados obtidos neste estudo, foi possível observar que a estimulação sensorial (processamento bottom-up) e a estimulação cognitiva (processamento top-down) mostraram impactar de forma diferente a resposta eletrofisiológica do PEATEc

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinically healthy mixed breed dogs (n = 20) were used to determine if a Tris (tromethamine)-buffered test solution, Otinide((R)) (Trademark of Dermcare-Vet Pty-Ltd, Australia), containing disodium ethylenediamine tetraacetic acid (EDTA; 1.21 g/L) and polyhexamethylene biguanide (PHMB; 0.22 g/L) caused ototoxicity or vestibular dysfunction. The dogs were randomly assigned to either a control group (group A, n = 10) receiving saline, or a treatment group (group B, n = 10) receiving the test solution. Phase 1 of the study consisted of applying 5.0 mL of saline to both ears of the control group (group A) and 5 mL of test solution to both ears of the test group (group B), for 21 days. A bilateral myringotomy was then performed on each dog under deep sedation. Phase 2 of the study then consisted of applying 2.0 mL of the saline to both ears of the control group (group A) and 2.0 mL of the test solution to both ears of the test group (group B), for 14 days. Throughout the study, dogs were examined for clinical health, and underwent otoscopic, vestibular and auditory examinations. The auditory examinations included brainstem auditory evoked potential (BAEP) threshold and supra-threshold assessments using both click and 8 kHz tone burst stimuli. The absence of vestibular signs and effects on the BAEP attributable to the test solution suggested the test solution could be applied safely to dogs, including those with a damaged tympanic membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with non-erosive reflux disease (NERD) report symptoms which commonly fail to improve on conventional antireflux therapies. Oesophageal visceral hyperalgaesia may contribute to symptom generation in NERD and we explore this hypothesis using oesophageal evoked potentials. Fifteen endoscopically confirmed NERD patients (four female, 29–56 years) plus 15 matched healthy volunteers (four female, 23–56 years) were studied. All patients had oesophageal manometry/24-h pH monitoring and all subjects underwent evoked potential and sensory testing, using electrical stimulation of the distal oesophagus. Cumulatively, NERD patients had higher sensory thresholds and increased evoked potential latencies when compared to controls (P = 0.01). In NERD patients, there was a correlation between pain threshold and acid exposure as determined by DeMeester score (r = 0.63, P = 0.02), with increased oesophageal sensitivity being associated with lower DeMeester score. Reflux negative patients had lower pain thresholds when compared to both reflux positive patients and controls. Evoked potentials were normal in reflux negative patients but significantly delayed in the reflux positive group (P = 0.01). We demonstrate that NERD patients form a continuum of oesophageal afferent sensitivity with a correlation between the degree of acid exposure and oesophageal pain thresholds. We provide objective evidence that increased oesophageal pain sensitivity in reflux negative NERD is associated with heightened afferent sensitivity as normal latency evoked potential responses could be elicited with reduced afferent input. Increased oesophageal afferent pain sensitivity may play an important role in a subset of NERD and could offer an alternate therapeutic target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background & Aims: Esophageal hypersensitivity is thought to be important in the generation and maintenance of symptoms in noncardiac chest pain (NCCP). In this study, we explored the neurophysiologic basis of esophageal hypersensitivity in a cohort of NCCP patients. Methods: We studied 12 healthy controls (9 women; mean age, 37.1 ± 8.7 y) and 32 NCCP patients (23 women; mean age, 47.2 ± 10 y). All had esophageal manometry, esophageal evoked potentials to electrical stimulation, and NCCP patients had 24-hour ambulatory pH testing. Results: The NCCP patients had reduced pain thresholds (PT) (72.1 ± 19.4 vs 54.2 ± 23.6, P = .02) and increased P1 latencies (P1 = 105.5 ± 11.1 vs 118.1 ± 23.4, P = .02). Subanalysis showed that the NCCP group could be divided into 3 distinct phenotypic classifications. Group 1 had reduced pain thresholds in conjunction with normal/reduced latency P1 latencies (n = 9). Group 2 had reduced pain thresholds in conjunction with increased (>2.5 SD) P1 latencies (n = 7), and group 3 had normal pain thresholds in conjunction with either normal (n = 10) or increased (>2.5 SD, n = 3) P1 latencies. Conclusions: Normal esophageal evoked potential latencies with reduced PT, as seen in group 1 patients, is indicative of enhanced afferent transmission and therefore increased esophageal afferent pathway sensitivity. Increased esophageal evoked potential latencies with reduced PT in group 2 patients implies normal afferent transmission to the cortex but heightened secondary cortical processing of this information, most likely owing to psychologic factors such as hypervigilance. This study shows that NCCP patients with esophageal hypersensitivity may be subclassified into distinct phenotypic subclasses based on sensory responsiveness and objective neurophysiologic profiles. © 2006 by the American Gastroenterological Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Pharyngeal stimulation can induce remarkable increases in the excitability of swallowing motor cortex, which is associated with short-term improvements in swallowing behaviour in dysphagic stroke patients. However, the mechanism by which this input induces cortical change remains unclear. Our aims were to explore the stimulus-induced facilitation of the cortico-bulbar projections to swallowing musculature and examine how input from the pharynx interacts with swallowing motor cortex. Methods: In 8 healthy subjects, a transcranial magnetic stimulation (TMS) paired-pulse investigation was performed comprising a single conditioning electrical pharyngeal stimulus (pulse width 0.2 ms, 240 V) followed by cortical TMS at inter-stimulus intervals (ISI) of 10-100 ms. Pharyngeal sensory evoked potentials (PSEP) were also measured over the vertex. In 6 subjects whole-brain magnetoencephalography (MEG) was further acquired following pharyngeal stimulation. Results: TMS evoked pharyngeal motor evoked potentials were facilitated by the pharyngeal stimulus at ISI between 50 and 80 ms (Δ mean increase: 47±6%, P<0.05). This correlated with the peak latency of the P1 component of the PSEP (mean 79.6±8.5 ms). MEG confirmed that the equivalent P1 peak activities were localised to caudolateral sensory and motor cortices (BA 4, 1, 2). Conclusions: Facilitation of the cortico-bulbar pathway to pharyngeal stimulation relates to coincident afferent input to sensorimotor cortex. Significance: These findings have mechanistic importance on how pharyngeal stimulation may increase motor excitability and provide guidance on temporal windows for future manipulations of swallowing motor cortex. © 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although visceral hypersensitivity is thought to be important in generating symptoms in functional gastrointestinal disorders, the neural mechanisms involved are poorly understood. We recently showed that central sensitization (hyperexcitability of spinal cord sensory neurones) may play an important role. In this study, we demonstrate that after a 30-min infusion of 0.15 M HCl acid into the healthy human distal esophagus, we see a reduction in the pain threshold to electrical stimulation of the non-acid-exposed proximal esophagus (9.6 ± 2.4 mA) and a concurrent reduction in the latency of the N1 and P2 components of the esophageal evoked potentials (EEP) from this region (10.4 ± 2.3 and 15.8 ± 5.3 ms, respectively). This reduced EEP latency indicates a central increase in afferent pathway velocity and therefore suggests that hyperexcitability within the central visceral pain pathway contributes to the hypersensitivity within the proximal, non-acid-exposed esophagus (secondary hyperalgesia/allodynia). These findings provide the first electrophysiological evidence that central sensitization contributes to human visceral hypersensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subjects with Alzheimer's disease (AD) exhibit normal visually evoked potentials (VEP) to pattern reversal stimuli but a delayed P2 flash response. The pattern response may originate in the primary visual cortex via the geniculo-calcarine pathway while the flash P2 may originate in the association areas via the cholinergic-tectal pathway. We now show: a) that the pathology of AD is more prominent in the visual association areas B18/19 than in B17 and b) that the magnetic signal to flash and pattern may originate from B18/19 and B17 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noxious stimuli in the esophagus cause pain that is referred to the anterior chest wall because of convergence of visceral and somatic afferents within the spinal cord. We sought to characterize the neurophysiological responses of these convergent spinal pain pathways in humans by studying 12 healthy subjects over three visits (V1, V2, and V3). Esophageal pain thresholds (Eso-PT) were assessed by electrical stimulation and anterior chest wall pain thresholds (ACW-PT) by use of a contact heat thermode. Esophageal evoked potentials (EEP) were recorded from the vertex following 200 electrical stimuli, and anterior chest wall evoked potentials (ACWEP) were recorded following 40 heat pulses. The fear of pain questionnaire (FPQ) was administered on V1. Statistical data are shown as point estimates of difference +/- 95% confidence interval. Pain thresholds increased between V1 and V3 [Eso-PT: V1-V3 = -17.9 mA (-27.9, -7.9) P < 0.001; ACW-PT: V1-V3 = -3.38 degrees C (-5.33, -1.42) P = 0.001]. The morphology of cortical responses from both sites was consistent and equivalent [P1, N1, P2, N2 complex, where P1 and P2 are is the first and second positive (downward) components of the CEP waveform, respectively, and N1 and N2 are the first and second negative (upward) components, respectively], indicating activation of similar cortical networks. For EEP, N1 and P2 latencies decreased between V1 and V3 [N1: V1-V3 = 13.7 (1.8, 25.4) P = 0.02; P2: V1-V3 = 32.5 (11.7, 53.2) P = 0.003], whereas amplitudes did not differ. For ACWEP, P2 latency increased between V1 and V3 [-35.9 (-60, -11.8) P = 0.005] and amplitudes decreased [P1-N1: V1-V3 = 5.4 (2.4, 8.4) P = 0.01; P2-N2: 6.8 (3.4, 10.3) P < 0.001]. The mean P1 latency of EEP over three visits was 126.6 ms and that of ACWEP was 101.6 ms, reflecting afferent transmission via Adelta fibers. There was a significant negative correlation between FPQ scores and Eso-PT on V1 (r = -0.57, P = 0.05). These data provide the first neurophysiological evidence of convergent esophageal and somatic pain pathways in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Auditory sensory gating (ASG) is the ability in individuals to suppress incoming irrelevant sensory input, indexed by evoked response to paired auditory stimuli. ASG is impaired in psychopathology such as schizophrenia, in which it has been proposed as putative endophenotype. This study aims to characterise electrophysiological properties of the phenomenon using MEG in time and frequency domains as well as to localise putative networks involved in the process at both sensor and source level. We also investigated the relationship between ASG measures and personality profiles in healthy participants in the light of its candidate endophenotype role in psychiatric disorders. Auditory evoked magnetic fields were recorded in twenty seven healthy participants by P50 ‘paired-click’ paradigm presented in pairs (conditioning stimulus S1- testing stimulus S2) at 80dB, separated by 250msec with inter trial interval of 7-10 seconds. Gating ratio in healthy adults ranged from 0.5 to 0.8 suggesting dimensional nature of P50 ASG. The brain regions active during this process were bilateral superior temporal gyrus (STG) and bilateral inferior frontal gyrus (IFG); activation was significantly stronger in IFG during S2 as compared to S1 (at p<0.05). Measures of effective connectivity between these regions using DCM modelling revealed the role of frontal cortex in modulating ASG as suggested by intracranial studies, indicating major role of inhibitory interneuron connections. Findings from this study identified a unique event-related oscillatory pattern for P50 ASG with alpha (STG)-beta (IFG) desynchronization and increase in cortical oscillatory gamma power (IFG) during S2 condition as compared to S1. These findings show that the main generator for P50 response is within temporal lobe and that inhibitory interneurons and gamma oscillations in the frontal cortex contributes substantially towards sensory gating. Our findings also show that ASG is a predictor of personality profiles (introvert vs extrovert dimension).