998 resultados para Laser Optics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of suitable laser sources is one of the main challenges in future space missions for accurate measurement of atmospheric CO2. The main objective of the European project BRITESPACE is to demonstrate the feasibility of an all-semiconductor laser source to be used as a space-borne laser transmitter in an Integrated Path Differential Absorption (IPDA) lidar system. We present here the proposed transmitter and system architectures, the initial device design and the results of the simulations performed in order to estimate the source requirements in terms of power, beam quality, and spectral properties to achieve the required measurement accuracy. The laser transmitter is based on two InGaAsP/InP monolithic Master Oscillator Power Amplifiers (MOPAs), providing the ON and OFF wavelengths close to the selected absorption line around 1.57 µm. Each MOPA consists of a frequency stabilized Distributed Feedback (DFB) master oscillator, a modulator section, and a tapered semiconductor amplifier optimized to maximize the optical output power. The design of the space-compliant laser module includes the beam forming optics and the thermoelectric coolers.The proposed system replaces the conventional pulsed source with a modulated continuous wave source using the Random Modulation-Continuous Wave (RM-CW) approach, allowing the designed semiconductor MOPA to be applicable in such applications. The system requirements for obtaining a CO2 retrieval accuracy of 1 ppmv and a spatial resolution of less than 10 meters have been defined. Envelope estimated of the returns indicate that the average power needed is of a few watts and that the main noise source is the ambient noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report on the progresses of the BRITESPACE Consortium in order to achieve space-borne LIDAR measurements of atmospheric carbon dioxide concentration based on an all semiconductor laser source at 1.57 ?m. The complete design of the proposed RM-CW IPDA LIDAR has been presented and described in detail. Complete descriptions of the laser module and the FSU have been presented. Two bended MOPAs, emitting at the sounding frequency of the on- and off- IPDA channels, have been proposed as the transmitter optical sources with the required high brightness. Experimental results on the bended MOPAs have been presented showing a high spectral purity and promising expectations on the high output power requirements. Finally, the RM-CW approach has been modelled and an estimation of the expected SNR for the entire system is presented. Preliminary results indicate that a CO2 retrieval precision of 1.5 ppm could be achieved with an average output power of 2 W for each channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate in a pilot study the visual, refractive, corneal topographic, and aberrometric changes after wavefront-guided LASIK or photorefractive keratectomy (PRK) using a high-resolution aberrometer to calculate the treatment for aberrated eyes. METHODS: Twenty aberrated eyes of 18 patients undergoing wavefront-guided LASIK or PRK using the VISX STARS4IR excimer laser and the iDesign aberrometer (Abbott Medical Optics, Inc., Santa Ana, CA) were enrolled in this prospective study. Three groups were differentiated: keratoconus post-CXL group including 11 keratoconic eyes (10 patients), post-LASIK group including 5 eyes (5 patients) with previous decentered LASIK treatments, and post-RK group including 4 eyes (3 patients) with previous radial keratotomy. Visual, refractive, contrast sensitivity, corneal topographic, and ocular aberrometric changes were evaluated during a 6-month follow-up. RESULTS: An improvement in uncorrected (UDVA) and corrected visual acuity (CDVA) associated with a reduction in the spherical equivalent was observed in the three groups, but was only statistically significant in the keratoconus post-CXL and post-LASIK groups (P ≤ .04). All eyes gained one or more lines of CDVA after surgery. Improvements in contrast sensitivity were observed in the three groups, but they were only statistically significant in the keratoconus post-CXL and post-LASIK groups (P ≤ .04). Regarding aberrations, a reduction was observed in trefoil aberrations in the keratoconus post-CXL group (P = .05) and significant reductions in higher-order and primary coma aberrations in the post-LASIK group (P = .04). CONCLUSIONS: Wavefront-guided laser enhancements using the evaluated platform seem to be safe and effective to restore the visual function in aberrated eyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multipole expansion of an incident radiation field-that is, representation of the fields as sums of vector spherical wavefunctions-is essential for theoretical light scattering methods such as the T-matrix method and generalised Lorenz-Mie theory (GLMT). In general, it is theoretically straightforward to find a vector spherical wavefunction representation of an arbitrary radiation field. For example, a simple formula results in the useful case of an incident plane wave. Laser beams present some difficulties. These problems are not a result of any deficiency in the basic process of spherical wavefunction expansion, but are due to the fact that laser beams, in their standard representations, are not radiation fields, but only approximations of radiation fields. This results from the standard laser beam representations being solutions to the paraxial scalar wave equation. We present an efficient method for determining the multipole representation of an arbitrary focussed beam. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We comment on the recent Letter by Argyros et al. [Opt. Lett. 29, 1882 (2004)] in which a microstructured polymer fiber doped with the dye Rhodamine 6G was discussed as a possible fiber laser source. We suggest that the lasing action at 632 nm was due to stimulated Raman scattering in the poly(methyl methacrylate) host material. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new method of modeling imaging of laser beams in the presence of diffraction. Our method is based on the concept of first orthogonally expanding the resultant diffraction field (that would have otherwise been obtained by the laborious application of the Huygens diffraction principle) and then representing it by an effective multimodal laser beam with different beam parameters. We show not only that the process of obtaining the new beam parameters is straightforward but also that it permits a different interpretation of the diffraction-caused focal shift in laser beams. All of the criteria that we have used to determine the minimum number of higher-order modes needed to accurately represent the diffraction field show that the mode-expansion method is numerically efficient. Finally, the characteristics of the mode-expansion method are such that it allows modeling of a vast array of diffraction problems, regardless of the characteristics of the incident laser beam, the diffracting element, or the observation plane. (C) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present theory and simulations for a spectral narrowing scheme for laser diode arrays (LDAs) that employs optical feedback from a diffraction grating. We calculate the effect of the so-called smile of the LDA and show that it is possible to reduce the effect by using a cylindrical lens set at an angle to the beam. The scheme is implemented on a 19-element LDA with smile of 7.6 mu m and yields frequency narrowing from a free-running width of 2 to 0.15 nm. The experimental results are in good agreement with the theory. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional detection scheme for self-mixing sensors uses an integrated photodiode within the laser package to monitor the self mixing signal. This arrangement can be simplified by directly obtaining the self-mixing signals across the laser diode itself and omitting the photodiode. This work reports on a Vertical-Cavity Surface-Emitting Laser (VCSEL) based selfmixing sensor using the laser junction voltage to obtain the selfmixing signal. We show that the same information can be obtained with only minor changes to the extraction circuitry leading to potential cost saving with reductions in component costs and complexity and significant increase in bandwidth favoring high speed modulation. Experiments using both photo current and voltage detection were carried out and the results obtained show good agreement with the theory.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1996 direct femtosecond inscription in transparent dielectrics has become the subject of intensive research. This enabling technology significantly expands the technological boundaries for direct fabrication of 3D structures in a wide variety of materials. It allows modification of non-photosensitive materials, which opens the door to numerous practical applications. In this work we explored the direct femtosecond inscription of waveguides and demonstrated at least one order of magnitude enhancement in the most critical parameter - the induced contrast of the refractive index in a standard borosilicate optical glass. A record high induced refractive contrast of 2.5×10-2 is demonstrated. The waveguides fabricated possess one of the lowest losses, approaching level of Fresnel reflection losses at the glassair interface. High refractive index contrast allows the fabrication of curvilinear waveguides with low bend losses. We also demonstrated the optimisation of the inscription regimes in BK7 glass over a broad range of experimental parameters and observed a counter-intuitive increase of the induced refractive index contrast with increasing translation speed of a sample. Examples of inscription in a number of transparent dielectrics hosts using high repetition rate fs laser system (both glasses and crystals) are also presented. Sub-wavelength scale periodic inscription inside any material often demands supercritical propagation regimes, when pulse peak power is more than the critical power for selffocusing, sometimes several times higher than the critical power. For a sub-critical regime, when the pulse peak power is less than the critical power for self-focusing, we derive analytic expressions for Gaussian beam focusing in the presence of Kerr non-linearity as well as for a number of other beam shapes commonly used in experiments, including astigmatic and ring-shaped ones. In the part devoted to the fabrication of periodic structures, we report on recent development of our point-by-point method, demonstrating the shortest periodic perturbation created in the bulk of a pure fused silica sample, by using third harmonics (? =267 nm) of fundamental laser frequency (? =800 nm) and 1 kHz femtosecond laser system. To overcome the fundamental limitations of the point-by-point method we suggested and experimentally demonstrated the micro-holographic inscription method, which is based on using the combination of a diffractive optical element and standard micro-objectives. Sub-500 nm periodic structures with a much higher aspect ratio were demonstrated. From the applications point of view, we demonstrate examples of photonics devices by direct femtosecond fabrication method, including various vectorial bend-sensors fabricated in standard optical fibres, as well as a highly birefringent long-period gratings by direct modulation method. To address the intrinsic limitations of femtosecond inscription at very shallow depths we suggested the hybrid mask-less lithography method. The method is based on precision ablation of a thin metal layer deposited on the surface of the sample to create a mask. After that an ion-exchange process in the melt of Ag-containing salts allows quick and low-cost fabrication of shallow waveguides and other components of integrated optics. This approach covers the gap in direct fs inscription of shallow waveguide. Perspectives and future developments of direct femtosecond micro-fabrication are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generation of picosecond pulses with a peak power in excess of 7W and a duration of 24ps from a gain-switched InGaN diode laser is demonstrated for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A liquid core waveguide as a refractometer is proposed. Microtunnels were created in standard optical fiber using tightly focused femtoscond laser inscription and chemical etching. A 1.2(h)x125(d) x500(l) µm micro-slot engraved along a fiber Bragg grating (FBG) was used to construct liquid core waveguide by filling the slot with index matching oils. The device was used to measure refractive index and sensitivity up to 10- 6/pm was obtained.