963 resultados para Larry Tremblay
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): There is considerable seasonal-to-interannual variability in the runoff of major watersheds in the Sierra Nevada, Coastal, and Cascade ranges of California and southwestern Oregon. This variability is reflected in both the amount and timing of runoff. This study examines that variability using long historical streamflow records and seasonal mean temperature and precipitation. ... Precipitation is the only significant predictor for both amount and timing of runoff in the low elevation basins. As elevation increases, the models rely more and more on temperature to explain amount and timing of runoff.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The purpose of this study is to determine: (1) whether the cooperative station snow depth contains useful weather and climate information, (2) how cooperative snow depth variability is related to snowcourse variability, and (3) how it is related to other weather elements. From an examination of stations in the Sierra Nevada of California, it is clear that cooperative snow records and snowcourse records have consistent spatial and temporal variability. ... We show that high snow ratio (low density snow or high SD/Ppt) events have low temperatures and high amplitude atmospheric circulation patterns over the eastern North Pacific. In contrast, low snow ratio (high density or low SD/Ppt) events have warm temperatures and a zonal flow pattern with a southerly displaced storm track from Hawaii to the West Coast.
Resumo:
Major controls on river salinity (total dissolved solids) in the western United States are climate, geology, and human activity. Climate, in general, influences soil-river salinity via salt-balance variations. When climate becomes wetter, river discharge increases and soil-river salinity decreases; when climate becomes drier river discharge decreases and soil-river salinity increases. This study characterizes the river salinity response to discharge using statistical-dynamic methods. An exploratory analysis of river salinity, using early 1900s water quality surveys in the western United States, shows much river salinity variability is in response to storm and annual discharge. Presumably this is because river discharge is largely supported by surface flow.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High-resolution oxygen-18 and total inorganic carbon (TIC) studies of cored sediments from the Owens Lake Basin, California, indicate that Owens Lake was hydrologically open (overflowing) most of the time between 52,500 and 12,500 carbon-14 YBP. ... The lack of a strong correspondence between North Atlantic climate records and the Owens Lake delta-oxygen-18 record has two possible explanations: (1) the sequence of large and abrupt climate change indicated in North Atlantic records is not global in scope and is largely confined to the North Atlantic and surrounding areas, or (2) Owens Lake is located in a part of the Great Basin that is relatively insensitive to the effects of climate perturbations recorded in the North Atlantic region.
Resumo:
For this new edition, author S. Larry Dixon is joined by Cesare Hall from the University of Cambridge, whose diverse background of teaching, research and work ...
Resumo:
Learning and memory play an important role in morphine addiction. Status epilepticus (SE) can impair the spatial and emotional learning and memory. However, little is known about the effects of SE on morphine-induced conditioned place preference (CPP). Th
Resumo:
The Southeast Fisheries Science Center (SEFSC) initiated annual, vessel-based visual sampling surveys of northern Gulf of Mexico marine mammals in 1990 and conducted a similar survey in U.S. Atlantic Exclusive Economic Zone (EEZ) waters from Miami, Florida, to Cape Hatteras, North Carolina, in 1992. The primary goal of these surveys was to meet Marine Mammal Protection Act requirements for estimating abundance and monitoring trends of marine mammal stocks in United States waters. The surveys were designed to collect: 1) marine mammal sighting data to estimate abundance and to determine distribution and diversity; and 2) environmental data to evaluate factors which may affect the distribution, abundance and diversity of marine mammals. The preliminary analyses for abundance estimation from the 1990-1993 surveys are presented in this report.
Resumo:
The Southeast Fisheries Science Center (SEFSC) initiated annual, vessel-based visual sampling surveys of northern Gulf of Mexico marine mammals in 1990. The primary goal of these surveys was to meet Marine Mammal Protection Act requirements for estimating abundance and monitoring trends of marine mammal stocks in United States waters. The surveys were designed to collect: 1) marine mammal sighting data to estimate abundance and to determine distribution and diversity; and 2) environmental data to evaluate factors which may affect the distribution, abundance and diversity of marine mammals. The analyses for abundance estimation from the 1991-1994 surveys are presented in this report.
Resumo:
Geoacoustic properties of the seabed have a controlling role in the propagation and reverberation of sound in shallow-water environments. Several techniques are available to quantify the important properties but are usually unable to adequately sample the region of interest. In this paper, we explore the potential for obtaining geotechnical properties from a process-based stratigraphic model. Grain-size predictions from the stratigraphic model are combined with two acoustic models to estimate sound speed with distance across the New Jersey continental shelf and with depth below the seabed. Model predictions are compared to two independent sets of data: 1) Surficial sound speeds obtained through direct measurement using in situ compressional wave probes, and 2) sound speed as a function of depth obtained through inversion of seabed reflection measurements. In water depths less than 100 m, the model predictions produce a trend of decreasing grain-size and sound speed with increasing water depth as similarly observed in the measured surficial data. In water depths between 100 and 130 m, the model predictions exhibit an increase in sound speed that was not observed in the measured surficial data. A closer comparison indicates that the grain-sizes predicted for the surficial sediments are generally too small producing sound speeds that are too slow. The predicted sound speeds also tend to be too slow for sediments 0.5-20 m below the seabed in water depths greater than 100 m. However, in water depths less than 100 m, the sound speeds between 0.5-20-m subbottom depth are generally too fast. There are several reasons for the discrepancies including the stratigraphic model was limited to two dimensions, the model was unable to simulate biologic processes responsible for the high sound-speed shell material common in the model area, and incomplete geological records necessary to accurately predict grain-size
Resumo:
The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This technical report describes a new protocol, the Unique Token Protocol, for reliable message communication. This protocol eliminates the need for end-to-end acknowledgments and minimizes the communication effort when no dynamic errors occur. Various properties of end-to-end protocols are presented. The unique token protocol solves the associated problems. It eliminates source buffering by maintaining in the network at least two copies of a message. A token is used to decide if a message was delivered to the destination exactly once. This technical report also presents a possible implementation of the protocol in a worm-hole routed, 3-D mesh network.
Resumo:
BACKGROUND:Cardiovascular disease (CVD) and its most common manifestations - including coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF) - are major causes of morbidity and mortality. In many industrialized countries, cardiovascular disease (CVD) claims more lives each year than any other disease. Heart disease and stroke are the first and third leading causes of death in the United States. Prior investigations have reported several single gene variants associated with CHD, stroke, HF, and AF. We report a community-based genome-wide association study of major CVD outcomes.METHODS:In 1345 Framingham Heart Study participants from the largest 310 pedigrees (54% women, mean age 33 years at entry), we analyzed associations of 70,987 qualifying SNPs (Affymetrix 100K GeneChip) to four major CVD outcomes: major atherosclerotic CVD (n = 142; myocardial infarction, stroke, CHD death), major CHD (n = 118; myocardial infarction, CHD death), AF (n = 151), and HF (n = 73). Participants free of the condition at entry were included in proportional hazards models. We analyzed model-based deviance residuals using generalized estimating equations to test associations between SNP genotypes and traits in additive genetic models restricted to autosomal SNPs with minor allele frequency [greater than or equal to]0.10, genotype call rate [greater than or equal to]0.80, and Hardy-Weinberg equilibrium p-value [greater than or equal to] 0.001.RESULTS:Six associations yielded p <10-5. The lowest p-values for each CVD trait were as follows: major CVD, rs499818, p = 6.6 x 10-6; major CHD, rs2549513, p = 9.7 x 10-6; AF, rs958546, p = 4.8 x 10-6; HF: rs740363, p = 8.8 x 10-6. Of note, we found associations of a 13 Kb region on chromosome 9p21 with major CVD (p 1.7 - 1.9 x 10-5) and major CHD (p 2.5 - 3.5 x 10-4) that confirm associations with CHD in two recently reported genome-wide association studies. Also, rs10501920 in CNTN5 was associated with AF (p = 9.4 x 10-6) and HF (p = 1.2 x 10-4). Complete results for these phenotypes can be found at the dbgap website http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:No association attained genome-wide significance, but several intriguing findings emerged. Notably, we replicated associations of chromosome 9p21 with major CVD. Additional studies are needed to validate these results. Finding genetic variants associated with CVD may point to novel disease pathways and identify potential targeted preventive therapies.
Resumo:
The insider threat is a security problem that is well-known and has a long history, yet it still remains an invisible enemy. Insiders know the security processes and have accesses that allow them to easily cover their tracks. In recent years the idea of monitoring separately for these threats has come into its own. However, the tools currently in use have disadvantages and one of the most effective techniques of human review is costly. This paper explores the development of an intelligent agent that uses already in-place computing material for inference as an inexpensive monitoring tool for insider threats. Design Science Research (DSR) is a methodology used to explore and develop an IT artifact, such as for this intelligent agent research. This methodology allows for a structure that can guide a deep search method for problems that may not be possible to solve or could add to a phenomenological instantiation.
Resumo:
Cloud services provide its users with flexible resource provisioning. But in the current market, a user has to choose from a limited set of configurations at a fixed price. This paper presents an autonomous negotiation system termed CloudNeg for negotiating cloud services. CloudNeg provides buyers and sellers of cloud services with autonomous agents to negotiate on the specifications of a cloud instance, including price, on their behalf. These agents elicit their buyers’ time preferences and use them in negotiations. Further, this paper presents two artifacts: a negotiation algorithm and a prototype which together form CloudNeg.
Resumo:
This paper presents a design science approach to solving persistent problems in the international shipping eco system by creating the missing common information infrastructures. Specifically, this paper reports on an ongoing dialogue between stakeholders in the shipping industry and information systems researchers engaged in the design and development of a prototype for an innovative IT-artifact called Shipping Information Pipeline which is a kind of “an internet” for shipping information. The instrumental aim is to enable information seamlessly to cross the organizational boundaries and national borders within international shipping which is a rather complex domain. The intellectual objective is to generate and evaluate the efficacy and effectiveness of design principles for inter-organizational information infrastructures in the international shipping domain that can have positive impacts on global trade and local economies.