933 resultados para Laboratory technicians.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nas últimas décadas, teorias têm sido formuladas para interpretar o comportamento de solos não saturados e estas têm se mostrado coerentes com resultados experimentais. Paralelamente, várias técnicas de campo e de laboratório têm sido desenvolvidas. No entanto, a determinação experimental dos parâmetros dos solos não saturados é cara, morosa, exige equipamentos especiais e técnicos experientes. Como resultado, essas teorias têm aplicação limitada a pesquisas acadêmicas e são pouco utilizados na prática da engenharia. Para superar este problema, vários pesquisadores propuseram equações para representar matematicamente o comportamento de solos não saturados. Estas proposições são baseadas em índices físicos, caracterização do solo, em ensaios convencionais ou simplesmente em ajustes de curvas. A relação entre a umidade e a sucção matricial, convencionalmente denominada curva característica de sucção do solo (SWCC) é também uma ferramenta útil na previsão do comportamento de engenharia de solos não saturados. Existem muitas equações para representar matematicamente a SWCC. Algumas são baseadas no pressuposto de que sua forma está diretamente relacionada com a distribuição dos poros e, portanto, com a granulometria. Nestas proposições, os parâmetros são calibrados pelo ajuste da curva de dados experimentais. Outros métodos supõem que a curva pode ser estimada diretamente a partir de propriedades físicas dos solos. Estas propostas são simples e conveniente para a utilização prática, mas são substancialmente incorretas, uma vez que ignoram a influência do teor de umidade, nível de tensões, estrutura do solo e mineralogia. Como resultado, a maioria tem sucesso limitado, dependendo do tipo de solo. Algumas tentativas têm sido feitas para prever a variação da resistência ao cisalhamento com relação a sucção matricial. Estes procedimentos usam, como uma ferramenta, direta ou indiretamente, a SWCC em conjunto com os parâmetros efetivos de resistência c e . Este trabalho discute a aplicabilidade de três equações para previsão da SWCC (Gardner, 1958; van Genuchten, 1980; Fredlund; Xing, 1994) para vinte e quatro amostras de solos residuais brasileiros. A adequação do uso da curva característica normalizada, proposta por Camapum de Carvalho e Leroueil (2004), também foi investigada. Os parâmetros dos modelos foram determinados por ajuste de curva, utilizando técnicas de problema inverso; dois métodos foram usados: algoritmo genético (AG) e Levenberq-Marquardt. Vários parâmetros que influênciam o comportamento da SWCC são discutidos. A relação entre a sucção matricial e resistência ao cisalhamento foi avaliada através de ajuste de curva utilizando as equações propostas por Öberg (1995); Sällfors (1997), Vanapalli et al., (1996), Vilar (2007); Futai (2002); oito resultados experimentais foram analisados. Os vários parâmetros que influênciam a forma da SWCC e a parcela não saturadas da resistência ao cisalhamento são discutidos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rhythm of division of 9 species belonging to different groups of algae were analysed in situ and in the laboratory. The research which developed in different environmental conditions attempted to establish the capacity for multiplication and assimilation of chlorophyll on the part of the algae under study with a view to placing them in a culture. The results obtained showed that the green multicellular algae (eg. Ulothrix) and the blue algae (eg. Lyngbya, Oscillatoria) are able to produce an appreciable quantity of dry matter, just as the unicellular algae. At the same time it arises that amongst the numerous factors of the environment, temperature plays one of the most important roles in the process of multiplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.

A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.

A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.

Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.

The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronal mass ejections (CMEs) are dramatic eruptions of large, plasma structures from the Sun. These eruptions are important because they can harm astronauts, damage electrical infrastructure, and cause auroras. A mysterious feature of these eruptions is that plasma-filled solar flux tubes first evolve slowly, but then suddenly erupt. One model, torus instability, predicts an explosive-like transition from slow expansion to fast acceleration, if the spatial decay of the ambient magnetic field exceeds a threshold.

We create arched, plasma filled, magnetic flux ropes similar to CMEs. Small, independently-powered auxiliary coils placed inside the vacuum chamber produce magnetic fields above the decay threshold that are strong enough to act on the plasma. When the strapping field is not too strong and not too weak, expansion force build up while the flux rope is in the strapping field region. When the flux rope moves to a critical height, the plasma accelerates quickly, corresponding to the observed slow-rise to fast-acceleration of most solar eruptions. This behavior is in agreement with the predictions of torus instability.

Historically, eruptions have been separated into gradual CMEs and impulsive CMEs, depending on the acceleration profile. Recent numerical studies question this separation. One study varies the strapping field profile to produce gradual eruptions and impulsive eruptions, while another study varies the temporal profile of the voltage applied to the flux tube footpoints to produce the two eruption types. Our experiment reproduced these different eruptions by changing the strapping field magnitude, and the temporal profile of the current trace. This suggests that the same physics underlies both types of CME and that the separation between impulsive and gradual classes of eruption is artificial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation.

The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate.

Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f99) was found to coincide with periods of heavy (f42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of these conditions to all measurements conducted during E-PEACE demonstrated that a large fraction of cloud droplet (72%) and dry aerosol mass (12%) sampled in the California coastal study region was heavily or moderately influenced by ship emissions. Another study investigated the chemical and physical evolution of a controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( < 1 hr) compared to the time needed for particles to become hygroscopic at sub-saturated humidity ( > 4 hr).

Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate.

Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary oxidation mechanism is suggested to be a combination of Fenton and photo-Fenton reactions which enhance particle-phase OH radical concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study concerns the longitudinal dispersion of fluid particles which are initially distributed uninformly over one cross section of a uniform, steady, turbulent open channel flow. The primary focus is on developing a method to predict the rate of dispersion in a natural stream.

Taylor's method of determining a dispersion coefficient, previously applied to flow in pipes and two-dimensional open channels, is extended to a class of three-dimensional flows which have large width-to-depth ratios, and in which the velocity varies continuously with lateral cross-sectional position. Most natural streams are included. The dispersion coefficient for a natural stream may be predicted from measurements of the channel cross-sectional geometry, the cross-sectional distribution of velocity, and the overall channel shear velocity. Tracer experiments are not required.

Large values of the dimensionless dispersion coefficient D/rU* are explained by lateral variations in downstream velocity. In effect, the characteristic length of the cross section is shown to be proportional to the width, rather than the hydraulic radius. The dimensionless dispersion coefficient depends approximately on the square of the width to depth ratio.

A numerical program is given which is capable of generating the entire dispersion pattern downstream from an instantaneous point or plane source of pollutant. The program is verified by the theory for two-dimensional flow, and gives results in good agreement with laboratory and field experiments.

Both laboratory and field experiments are described. Twenty-one laboratory experiments were conducted: thirteen in two-dimensional flows, over both smooth and roughened bottoms; and eight in three-dimensional flows, formed by adding extreme side roughness to produce lateral velocity variations. Four field experiments were conducted in the Green-Duwamish River, Washington.

Both laboratory and flume experiments prove that in three-dimensional flow the dominant mechanism for dispersion is lateral velocity variation. For instance, in one laboratory experiment the dimensionless dispersion coefficient D/rU* (where r is the hydraulic radius and U* the shear velocity) was increased by a factory of ten by roughening the channel banks. In three-dimensional laboratory flow, D/rU* varied from 190 to 640, a typical range for natural streams. For each experiment, the measured dispersion coefficient agreed with that predicted by the extension of Taylor's analysis within a maximum error of 15%. For the Green-Duwamish River, the average experimentally measured dispersion coefficient was within 5% of the prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a wind farm, multiple turbine wakes can interact and have a substantial effect on the overall power production. This makes an understanding of the wake recovery process critically important to optimizing wind farm efficiency. Vertical-axis wind turbines (VAWTs) exhibit features that are amenable to dramatically improving this efficiency. However, the physics of the flow around VAWTs is not well understood, especially as it pertains to wake interactions, and it is the goal of this thesis to partially fill this void. This objective is approached from two broadly different perspectives: a low-order view of wind farm aerodynamics, and a detailed experimental analysis of the VAWT wake.

One of the contributions of this thesis is the development of a semi-empirical model of wind farm aerodynamics, known as the LRB model, that is able to predict turbine array configurations to leading order accuracy. Another contribution is the characterization of the VAWT wake as a function of turbine solidity. It was found that three distinct regions of flow exist in the VAWT wake: (1) the near wake, where periodic blade shedding of vorticity dominates; (2) a transition region, where growth of a shear-layer instability occurs; (3) the far wake, where bluff-body oscillations dominate. The wake transition can be predicted using a new parameter, the dynamic solidity, which establishes a quantitative connection between the wake of a VAWT and that of a circular cylinder. The results provide insight into the mechanism of the VAWT wake recovery and the potential means to control it.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

English: For nearly a century, fisheries scientists have studied marine fish stocks in an effort to understand how the abundances of fish populations are determined. During the early lives of marine fishes, survival is variable, and the numbers of individuals surviving to transitional stages or recruitment are difficult to predict. The egg, larval, and juvenile stages of marine fishes are characterized by high rates of mortality and growth. Most marine fishes, particularly pelagic species, are highly fecund, produce small eggs and larvae, and feed and grow in complex aquatic ecosystems. The identification of environmental or biological factors that are most important in controlling survival during the early life stages of marine fishes is a potentially powerful tool in stock assessment. Because vital rates (mortality and growth) during the early life stages of marine fishes are high and variable, small changes in those rates can have profound effects on the properties of survivors and recruitment potential (Houde 1989). Understanding and predicting the factors that most strongly influence pre-recruit survival are key goals of fisheries research programs. Spanish: Desde hace casi un siglo, los científicos pesqueros han estudiado las poblaciones de peces marinos en un intento por entender cómo se determina la abundancia de las mismas. Durante la vida temprana de los peces marinos, la supervivencia es variable, y el número de individuos que sobrevive hasta las etapas transicionales o el reclutamiento es difícil de predecir. Las etapas de huevo, larval, y juvenil de los peces marinos son caracterizadas por tasas altas de mortalidad y crecimiento. La mayoría de los peces marinos, particularmente las especies pelágicas, son muy fecundos, producen huevos y larvas pequeños, y se alimentan y crecen en ecosistemas acuáticos complejos. La identificación los factores ambientales o biológicos más importantes en el control de la supervivencia durante las etapas tempranas de vida de los peces marinos es una herramienta potencialmente potente en la evaluación de las poblaciones. Ya que las tasas vitales (mortalidad y crecimiento) durante las etapas tempranas de vida de los peces marinos son altas y variables, cambios pequeños en esas tasas pueden ejercer efectos importantes sobre las propiedades de los supervivientes y el potencial de reclutamiento (Houde 1989). Comprender y predecir los factores que más afectan la supervivencia antes del reclutamiento son objetivos clave de los programas de investigación pesquera.