371 resultados para LORENTZ


Relevância:

10.00% 10.00%

Publicador:

Resumo:

For redundant second-class constraints the Dirac brackets cannot be defined and new brackets must be introduced. We prove here that the Jacobi identity for the new brackets must hold on the surface of the second-class constraints. In order to illustrate our proof we work out explicitly the cases of a fractional spin particle in 2 + 1 dimensions and the original Brink-Schwarz massless superparticle in D = 10 dimensions in a Lorentz-covariant constraints separation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and Maxwell-Chern-Simons models. Their scalar nature is highlighted and discussed through a dimensional reduction of four-dimensional electrodynamics with electric and magnetic sources. Some general properties and similarities whether considered in Minkowski or Euclidean space are mentioned. However, by virtue of the structure of the space-time in which they are studied, a number of differences among them occur. Furthermore, we pay attention to some consequences of these objects when they act upon the usual particles. Among other subjects, special attention is given to the study of a Lorentz-violating nonminimal coupling between neutral fermions and the field generated by a monopole alone. In addition, an analogue of the Aharonov-Casher effect is discussed in this framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exact analytic solutions are found to the Dirac equation for a combination of Lorentz scalar and vector Coulombic potentials with additional non-Coulombic parts. An appropriate linear combination of Lorentz scalar and vector non-Coulombic potentials, with the scalar part dominating, can be chosen to give exact analytic Dirac wave functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of confinement of spinless particles in 1 + 1 dimensions is approached with a linear potential by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new expression for the spin connection of teleparallel gravity is proposed, given by minus the contorsion tensor plus a zero connection. The corresponding minimal coupling is covariant under local Lorentz transformation, and equivalent to the minimal coupling prescription of general relativity. With this coupling prescription, therefore, teleparallel gravity turns out to be fully equivalent to general relativity, even in the presence of spinor fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that by introducing appropriate local Z(N)(Ngreater than or equal to13) symmetries in electroweak models it is possible to implement an automatic Peccei-Quinn symmetry, at the same time keeping the axion protected against gravitational effects. Although we consider here only an extension of the standard model and a particular 3-3-1 model, the strategy can be used in any kind of electroweak model. An interesting feature of this 3-3-1 model is that if we add (i) right-handed neutrinos, (ii) the conservation of the total lepton number, and (iii) a Z(2) symmetry, the Z(13) and the chiral Peccei-Quinn U(1)P-Q symmetries are both accidental symmetries in the sense that they are not imposed on the Lagrangian but are just a consequence of the particle content of the model, its gauge invariance, renormalizability, and Lorentz invariance. In addition, this model has no domain wall problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the teleparallel equivalent of general relativity, curvature and torsion are two equivalent ways of describing the same gravitational field. Though equivalent, they act differently: curvature yields a geometric description, in which the concept of gravitational force is absent whereas torsion acts as a true gravitational force, quite similar to the Lorentz force of electrodynamics. As a consequence, the right-hand side of a spinless-particle equation of motion (which would represent a gravitational force) is always zero in the geometric description, but not in the teleparallel case. This means that the gravitational coupling prescription can be minimal only in the geometric case. Relying on this property, a new gravitational coupling prescription in the presence of curvature and torsion is proposed. It is constructed in such a way to preserve the equivalence between curvature and torsion, and its basic property is to be equivalent to the usual coupling prescription of general relativity. According to this view, no new physics is connected with torsion, which is just an alternative to curvature in the description of gravitation. An application of this formulation to the equations of motion of both a spinless and a spinning particle is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider vortices in the nonlocal two-dimensional Gross-Pitaevskii equation with the interaction potential having Lorentz-shaped dependence on the relative momentum. It is shown that in the Fourier series expansion with respect to the polar angle, the unstable modes of the axial n-fold vortex have orbital numbers l satisfying 0 < \l\ < 2\n\, as in the local model. Numerical simulations show that nonlocality slightly decreases the threshold rotation frequency above which the nonvortex state ceases to be the global energy minimum and decreases the frequency of the anomalous mode of the 1-vortex. In the case of higher axial vortices, nonlocality leads to instability against splitting with the creation of antivortices and gives rise to additional anomalous modes with higher orbital numbers. Despite new instability channels with the creation of antivortices, for a stationary solution comprised of vortices and antivortices there always exists another vortex solution, composed solely of vortices, with the same total vorticity but with a lower energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cosmological constant is shown to have an algebraic meaning: it is essentially an eigenvalue of a Casimir invariant of the Lorentz group acting on the spaces tangent to every spacetime. This is found in the context of de Sitter spacetimes, for which the Einstein equation is a relation between operators. Nevertheless, the result brings, to the foreground the skeleton algebraic structure underlying the geometry of general physical spacetimes. which differ from one another by the fleshening of that structure by different tetrad fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the properties of the gravitational energy-momentum 3-form within the tetrad formulation of general relativity theory. We derive the covariance properties of the quantities describing the energy-momentum content under Lorentz transformations of the tetrad. As an application, we consider the computation of the total energy (mass) of some exact solutions of Einstein's general relativity theory which describe compact sources with asymptotically flat spacetime geometry. As it is known, depending on the choice of tetrad frame, the formal total integral for such configurations may diverge. We propose a natural regularization method which yields finite values for the total energy-momentum of the system and demonstrate how it works on a number of explicit examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general matter field can be obtained from the invariance of the corresponding action integral under transformations taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.