975 resultados para LIDAR
Resumo:
Reducción del número de parcelas de muestreo al incorporar información auxiliar LiDAR en la estimación de variables dasométricas
Resumo:
Delineación de rodales para la ordenación forestal a partir de información LIDAR.
Resumo:
Las aplicaciones tecnológicas obtenidas a partir de sensores láser aerotransportados (Airborne Laser Scanner, ALS), han supuesto una gran expectativa para mejorar la calidad de los datos del inventario forestal, mediante su actualización y la posible disminución de los costes de inventario. Sin embargo, todavía existen problemas de aplicación que no están resueltos de manera que su empleo como sustitutivo de un inventario tradicional presenta algunas incógnitas, tanto de carácter técnico como económicas. Por ello, en este trabajo se va a realizar un estudio analítico de costes de utilización, teniendo en cuenta los objetivos del inventario y las limitaciones de la técnica. El caso de estudio se sitúa en el Pinar de Valsaín (Segovia).
Resumo:
Habitualmente se considera que en los inventarios forestales realizados con tecnología LiDAR no existe error de muestreo. El error en la estimación de las variables se asimila a la bondad de ajuste obtenida en la regresión que se usa para la predicción de dichas variables. Sin embargo el inventario LiDAR puede ser considerado como un muestreo en dos fases con estimador de regresión, por lo que es posible calcular el error que se comete en dicho inventario. Se presenta como aplicación el inventario de los montes de Utilidad Pública números 193 y 194 de la provincia de Soria, poblados principalmente con masas de repoblación de Pinus sylvestris. Se ha trabajado con una muestra de 50 parcelas circulares de 11 metros de radio y una densidad media de datos LiDAR de 2 puntos/m2. Para la estimación del volumen maderable (V) se ha ajustado una regresión lineal con un coeficiente de determinación R2=0,8985. Los resultados muestran que los errores obtenidos en un inventario LiDAR son sustancialmente menores que los obtenidos en un muestreo sistemático por parcelas (5,1% frente a 14.9% en el caso analizado). También se observa que se consigue un error de muestreo mínimo para la estimación del volumen cuando la regresión se realiza pixeles de tamaño igual al de la parcela de muestreo en campo y que para minimizar el error a nivel de rodal es necesario maximizar el rango de aplicación de la regresión.
Resumo:
El contenido del Proyecto Fin de Carrera está desarrollado para profundizar en el conocimiento de las aplicaciones para el procesado de datos LiDAR, si bien, puede ser utilizado también como guía o consulta por el personal docente y técnico interesado, en el desarrollo o explicación de otros trabajos de comparación de herramientas relacionadas con la topografía. Por último, se pretende con esta comparación que se pueda elegir con facilidad una u otra aplicación según las necesidades de los proyectos y las capacidades con las que se cuentan, teniendo en cuenta las limitaciones a la hora de disponer de todo lo necesario para su realización. Los objetivos que se quieren alcanzar son: • Obtención de datos geoespaciales de unas zonas para su posterior procesado. • Realizar un control de calidad general para comprobar que los datos son aptos para nuestro trabajo. • Elegir las aplicaciones informáticas y establecer unos criterios de comparación. Para después poder realizar la comparativa de las aplicaciones informáticas. La consecución de los objetivos generales es posible a partir del planteamiento de los siguientes objetivos específicos: • Presentar el vuelo de una zona y las características de este. • Realizar un control de calidad específico en altimetría y planimetría. • Justificar la elección de distintas zonas a editar. • Definir los criterios que se van a comparar. • Edición generada con las aplicaciones que se han elegido, las cuales son: FUSION, MDTopX, TerraScan, MARS y SCOP. • Y por último realizar una comparativa entre las aplicaciones según los criterios elegidos.
Resumo:
Este estudio presenta una comparativa entre un LIDAR modelo LMS-111 (Sick Ltd.) y una cámara de profundidad de uso doméstico: Kinect (Microsoft Corporation), orientada a determinar las condiciones de uso de uno y otro sensor, así como sus ventajas e inconvenientes cuando son empleados en condiciones de campo, en una explotación agrícola. Para ello se realizaron diversos ensayos en una parcela experimental del CSIC-CAR de Arganda del Rey, España. Para los ensayos ambos sensores fueron instalados en un tractor operado remotamente diseñado y construido en el marco del proyecto europeo RHEA. Dicho tractor realizó dos recorridos diferentes: el primero se efectuó en paralelo a un muro y el segundo paralelo a una hilera de olivos. El primer ensayo se realizó con el propósito de cuantificar la uniformidad de las mediciones de ambos sensores y el segundo para validar los resultados en un cultivo real. Los recorridos se realizaron empleando cuatro marchas diferentes, con el objetivo de determinar si los diferentes regímenes de operación del motor influyen sobre la precisión de los sensores. Los resultados muestran que el LIDAR posee un mayor alcance máximo de medición, pero una resolución menor frente a Kinect, muestran además que el LIDAR puede ser operado a cualquier hora del día y condición meteorológica, mientras que Kinect, no puede operar en exteriores, salvo en horas del día con baja intensidad lumínica. Por otra parte la gran desventaja del LIDAR es su coste, 30 veces más alto que Kinect.
Resumo:
Este estudio profundiza en la estimación de variables forestales a partir de información LiDAR en el Valle de la Fuenfría (Cercedilla, Madrid). Para ello se dispone de dos vuelos realizados con sensor LiDAR en los años 2002 y 2011 y en el invierno de 2013 se ha realizado un inventario de 60 parcelas de campo. En primer lugar se han estimado seis variables dasométricas (volumen, área basimétrica, biomasa total, altura dominante, densidad y diámetro medio cuadrático) para 2013, tanto a nivel de píxel como a nivel de rodal y monte. Se construyeron modelos de regresión lineal múltiple que permitieron estimar con precisión dichas variables. En segundo lugar, se probaron diferentes métodos para la estimación de la distribución diamétrica. Por un lado, el método de predicción de percentiles y, por otro lado, el método de predicción de parámetros. Este segundo método se probó para una función Weibull simple, una función Weibull doble y una combinación de ambas según la distribución que mejor se ajustaba a cada parcela. Sin embargo, ninguno de los métodos ha resultado suficientemente válido para predecir la distribución diamétrica. Por último se estimaron el crecimiento en volumen y área basimétrica a partir de la comparación de los vuelos del 2002 y 2011. A pesar de que la tecnología LiDAR era diferente y solo se disponía de un inventario completo, realizado en 2013, los modelos construidos presentan buenas bondades de ajuste. Asimismo, el crecimiento a nivel de pixel se ha mostrado estar relacionado de forma estadísticamente significativa con la pendiente, orientación y altitud media del píxel. ABSTRACT This project goes in depth on the estimation of forest attributes by means of LiDAR data in Fuenfria’s Valley (Cercedilla, Madrid). The available information was two LiDAR flights (2002 and 2011) and a forest inventory consisting of 60 plots (2013). First, six different dasometric attributes (volume, basal area, total aboveground biomass, top height, density and quadratic mean diameter) were estimated in 2013 both at a pixel, stand and forest level. The models were developed using multiple linear regression and were good enough to predict these attributes with great accuracy. Second, the measured diameter distribution at each plot was fitted to a simple and a double Weibull distribution and different methods for its estimation were tested. Neither parameter prediction method nor percentile prediction method were able to account for the diameter distribution. Finally, volume and top height growths were estimated comparing 2011 LiDAR flight with 2002 LiDAR flight. Even though the LiDAR technology was not the same and there was just one forest inventory with sample plots, the models properly explain the growth. Besides, growth at each pixel is significantly related to its average slope, orientation and altitude.
Resumo:
La utilización de una cámara fotogramétrica digital redunda en el aumento demostrable de calidad radiométrica debido a la mejor relación señal/ruido y a los 12 bits de resolución radiométrica por cada pixel de la imagen. Simultáneamente se consigue un notable ahorro de tiempo y coste gracias a la eliminación de las fases de revelado y escaneado de la película y al aumento de las horas de vuelo por día. De otra parte, el sistema láser aerotransportado (LIDAR - Light Detection and Ranging) es un sistema con un elevado rendimiento y rentabilidad para la captura de datos de elevaciones para generar un modelo digital del terreno (MDT) y también de los objetos sobre el terreno, permitiendo así alcanzar alta precisión y densidad de información. Tanto el sistema LIDAR como el sistema de cámara fotogramétrica digital se combinan con otras técnicas bien conocidas: el sistema de posicionamiento global (GPS - Global Positioning System) y la orientación de la unidad de medida inercial (IMU - Inertial Measure Units), que permiten reducir o eliminar el apoyo de campo y realizar la orientación directa de los sensores utilizando datos de efemérides precisas de los satélites. Combinando estas tecnologías, se va a proponer y poner en práctica una metodología para generación automática de ortofotos en países de América del Sur. Analizando la precisión de dichas ortofotos comparándolas con fuente de mayor exactitud y con las especificaciones técnicas del Plan Nacional de Ortofotografía Aérea (PNOA) se determinará la viabilidad de que dicha metodología se pueda aplicar a zonas rurales. ABSTRACT Using a digital photogrammetric camera results in a demonstrable increase of the radiometric quality due to a better improved signal/noise ratio and the radiometric resolution of 12 bits per pixel of the image. Simultaneously a significant saving of time and money is achieved thanks to the elimination of the developing and film scanning stages, as well as to the increase of flying hours per day. On the other hand, airborne laser system Light Detection and Ranging (LIDAR) is a system with high performance and yield for the acquisition of elevation data in order to generate a digital terrain model (DTM), as well as objects on the ground which allows to achieve high accuracy and data density. Both the LIDAR and the digital photogrammetric camera system are combined with other well known techniques: global positioning system (GPS) and inertial measurement unit (IMU) orientation, which are currently in a mature evolutionary stage, which allow to reduce and/or remove field support and perform a direct guidance of sensors using specific historic data from the satellites. By combining these technologies, a methodology for automatic generation of orthophotos in South American countries will be proposed and implemented. Analyzing the accuracy of these orthophotos comparing them with more accurate sources and technical specifications of the National Aerial Orthophoto (PNOA), the viability of whether this methodology should be applied to rural areas, will be determined.
Resumo:
In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R 2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.
Resumo:
Light Detection and Ranging (LIDAR) provides high horizontal and vertical resolution of spatial data located in point cloud images, and is increasingly being used in a number of applications and disciplines, which have concentrated on the exploit and manipulation of the data using mainly its three dimensional nature. Bathymetric LIDAR systems and data are mainly focused to map depths in shallow and clear waters with a high degree of accuracy. Additionally, the backscattering produced by the different materials distributed over the bottom surface causes that the returned intensity signal contains important information about the reflection properties of these materials. Processing conveniently these values using a Simplified Radiative Transfer Model, allows the identification of different sea bottom types. This paper presents an original method for the classification of sea bottom by means of information processing extracted from the images generated through LIDAR data. The results are validated using a vector database containing benthic information derived by marine surveys.
Resumo:
OBJETIVOS ESPECÍFICOS del proyecto: - Conocer de manera básica la historia del LiDAR y cómo se ha ido desarrollando. - Comprender el funcionamiento del LiDAR para un posterior entendimiento de los resultados obtenidos a partir del Control de Calidad. - Confeccionar un esquema para la metodología decidiendo el procedimiento a seguir. - Una vez hallados los resultados comprobar que medidas estadísticas descriptivas son más óptimas a la hora de mostrar los resultados. ALCANCE DEL PROYECTO. Al llevar a cabo este proyecto en el cual se ha realizado un Control de Calidad de una nube de puntos LiDAR como se especifica en el título del mismo se pretende alcanzar dos principales objetivos, uno inmediato y que obtenemos durante el procedimiento del proyecto y otro objetivo con vistas al futuro. El objetivo inmediato corresponde a la obtención de errores una vez realizado el Control de Calidad. Hallados los resultados se han llevado a cabo diferentes comparaciones y comprobaciones con el fin de detectar errores sistemáticos que se puedan subsanar en un futuro de manera inmediata. Como objetivo futuro y a consecuencia del anterior sería la automatización de todos los procedimientos realizados en este proyecto, es decir, la obtención de una aplicación informática la cual englobase todas las funciones que se han utilizado y que además pudiera eliminar posibles errores sistemáticos producidos por el LiDAR.
Resumo:
La Gestión Forestal Sostenible se define como “la administración y uso de los bosques y tierras forestales de forma e intensidad tales que mantengan su biodiversidad, productividad, capacidad de regeneración, vitalidad y su potencial para atender, ahora y en el futuro, las funciones ecológicas, económicas y sociales relevantes a escala local, nacional y global, y que no causan daño a otros ecosistemas” (MCPFE Conference, 1993). Dentro del proceso los procesos de planificación, en cualquier escala, es necesario establecer cuál será la situación a la que se quiere llegar mediante la gestión. Igualmente, será necesario conocer la situación actual, pues marcará la situación de partida y condicionará el tipo de actuaciones a realizar para alcanzar los objetivos fijados. Dado que, los Proyectos de Ordenación de Montes y sus respectivas revisiones son herramientas de planificación, durante la redacción de los mismos, será necesario establecer una serie de objetivos cuya consecución pueda verificarse de forma objetiva y disponer de una caracterización de la masa forestal que permita conocer la situación de partida. Esta tesis se centra en problemas prácticos, propios de una escala de planificación local o de Proyecto de Ordenación de Montes. El primer objetivo de la tesis es determinar distribuciones diamétricas y de alturas de referencia para masas regulares por bosquetes, empleando para ello el modelo conceptual propuesto por García-Abril et al., (1999) y datos procedentes de las Tablas de producción de Rojo y Montero (1996). Las distribuciones de referencia obtenidas permitirán guiar la gestión de masas irregulares y regulares por bosquetes. Ambos tipos de masas aparecen como una alternativa deseable en aquellos casos en los que se quiere potenciar la biodiversidad, la estabilidad, la multifuncionalidad del bosque y/o como alternativa productiva, especialmente indicada para la producción de madera de calidad. El segundo objetivo de la Tesis está relacionado con la necesidad de disponer de una caracterización adecuada de la masa forestal durante la redacción de los Proyectos de Ordenación de Montes y de sus respectivas revisiones. Con el fin de obtener estimaciones de variables forestales en distintas unidades territoriales de potencial interés para la Ordenación de Montes, así como medidas de la incertidumbre en asociada dichas estimaciones, se extienden ciertos resultados de la literatura de Estimación en Áreas Pequeñas. Mediante un caso de estudio, se demuestra el potencial de aplicación de estas técnicas en inventario forestales asistidos con información auxiliar procedente de sensores láser aerotransportados (ALS). Los casos de estudio se realizan empleando datos ALS similares a los recopilados en el marco del Plan Nacional de Ortofotografía Aérea (PNOA). Los resultados obtenidos muestran que es posible aumentar la eficiencia de los inventarios forestales tradicionales a escala de proyecto de Ordenación de Montes, mediante la aplicación de estimadores EBLUP (Empirical Best Linear Unbiased Predictor) con modelos a nivel de elemento poblacional e información auxiliar ALS similar a la recopilada por el PNOA. ABSTRACT According to MCPFE (1993) Sustainable Forest Management is “the stewardship and use of forests and forest lands in a way, and at a rate, that maintains their biodiversity, productivity, regeneration capacity, vitality and their potential to fulfill, now and in the future, relevant ecological, economic and social functions, at local, national, and global levels, and that does not cause damage to other ecosystems”. For forest management planning, at any scale, we must determine what situation is hoped to be achieved through management. It is also necessary to know the current situation, as this will mark the starting point and condition the type of actions to be performed in order to meet the desired objectives. Forest management at a local scale is no exception. This Thesis focuses on typical problems of forest management planning at a local scale. The first objective of this Thesis is to determine management objectives for group shelterwood management systems in terms of tree height and tree diameter reference distributions. For this purpose, the conceptual model proposed by García-Abril et al., (1999) is applied to the yield tables for Pinus sylvestris in Sierra de Guadrrama (Rojo y Montero, 1996). The resulting reference distributions will act as a guide in the management of forests treated under the group shelterwood management systems or as an approximated reference for the management of uneven aged forests. Both types of management systems are desirable in those cases where forest biodiversity, stability and multifunctionality are pursued goals. These management systems are also recommended as alternatives for the production of high quality wood. The second objective focuses on the need to adequately characterize the forest during the decision process that leads to local management. In order to obtain estimates of forest variables for different management units of potential interest for forest planning, as well as the associated measures of uncertainty in these estimates, certain results from Small Area Estimation Literature are extended to accommodate for the need of estimates and reliability measures in very small subpopulations containing a reduced number of pixels. A case study shows the potential of Small Area Estimation (SAE) techniques in forest inventories assisted with remotely sensed auxiliary information. The influence of the laser pulse density in the quality of estimates in different aggregation levels is analyzed. This study considers low laser pulse densities (0.5 returns/m2) similar to, those provided by large-scale Airborne Laser Scanner (ALS) surveys, such as the one conducted by the Spanish National Geographic Institute for about 80% of the Spanish territory. The results obtained show that it is possible to improve the efficiency of traditional forest inventories at local scale using EBLUP (Empirical Best Linear Unbiased Predictor) estimators based on unit level models and low density ALS auxiliary information.
Resumo:
El autor ha trabajado como parte del equipo de investigación en mediciones de viento en el Centro Nacional de Energías Renovables (CENER), España, en cooperación con la Universidad Politécnica de Madrid y la Universidad Técnica de Dinamarca. El presente reporte recapitula el trabajo de investigación realizado durante los últimos 4.5 años en el estudio de las fuentes de error de los sistemas de medición remota de viento, basados en la tecnología lidar, enfocado al error causado por los efectos del terreno complejo. Este trabajo corresponde a una tarea del paquete de trabajo dedicado al estudio de sistemas remotos de medición de viento, perteneciente al proyecto de intestigación europeo del 7mo programa marco WAUDIT. Adicionalmente, los datos de viento reales han sido obtenidos durante las campañas de medición en terreno llano y terreno complejo, pertenecientes al también proyecto de intestigación europeo del 7mo programa marco SAFEWIND. El principal objetivo de este trabajo de investigación es determinar los efectos del terreno complejo en el error de medición de la velocidad del viento obtenida con los sistemas de medición remota lidar. Con este conocimiento, es posible proponer una metodología de corrección del error de las mediciones del lidar. Esta metodología está basada en la estimación de las variaciones del campo de viento no uniforme dentro del volumen de medición del lidar. Las variaciones promedio del campo de viento son predichas a partir de los resultados de las simulaciones computacionales de viento RANS, realizadas para el parque experimental de Alaiz. La metodología de corrección es verificada con los resultados de las simulaciones RANS y validadas con las mediciones reales adquiridas en la campaña de medición en terreno complejo. Al inicio de este reporte, el marco teórico describiendo el principio de medición de la tecnología lidar utilizada, es presentado con el fin de familiarizar al lector con los principales conceptos a utilizar a lo largo de este trabajo. Posteriormente, el estado del arte es presentado en donde se describe los avances realizados en el desarrollo de la la tecnología lidar aplicados al sector de la energía eólica. En la parte experimental de este trabajo de investigación se ha estudiado los datos adquiridos durante las dos campañas de medición realizadas. Estas campañas has sido realizadas en terreno llano y complejo, con el fin de complementar los conocimiento adquiridos en casa una de ellas y poder comparar los efectos del terreno en las mediciones de viento realizadas con sistemas remotos lidar. La primer campaña experimental se desarrollo en terreno llano, en el parque de ensayos de aerogeneradores H0vs0re, propiedad de DTU Wind Energy (anteriormente Ris0). La segunda campaña experimental se llevó a cabo en el parque de ensayos de aerogeneradores Alaiz, propiedad de CENER. Exactamente los mismos dos equipos lidar fueron utilizados en estas campañas, haciendo de estos experimentos altamente relevantes en el contexto de evaluación del recurso eólico. Un equipo lidar está basado en tecnología de onda continua, mientras que el otro está basado en tecnología de onda pulsada. La velocidad del viento fue medida, además de con los equipos lidar, con anemómetros de cazoletas, veletas y anemómetros verticales, instalados en mástiles meteorológicos. Los sensores del mástil meteorológico son considerados como las mediciones de referencia en el presente estudio. En primera instancia, se han analizado los promedios diez minútales de las medidas de viento. El objetivo es identificar las principales fuentes de error en las mediciones de los equipos lidar causadas por diferentes condiciones atmosféricas y por el flujo no uniforme de viento causado por el terreno complejo. El error del lidar ha sido estudiado como función de varias propiedades estadísticas del viento, como lo son el ángulo vertical de inclinación, la intensidad de turbulencia, la velocidad vertical, la estabilidad atmosférica y las características del terreno. El propósito es usar este conocimiento con el fin de definir criterios de filtrado de datos. Seguidamente, se propone una metodología para corregir el error del lidar causado por el campo de viento no uniforme, producido por la presencia de terreno complejo. Esta metodología está basada en el análisis matemático inicial sobre el proceso de cálculo de la velocidad de viento por los equipos lidar de onda continua. La metodología de corrección propuesta hace uso de las variaciones de viento calculadas a partir de las simulaciones RANS realizadas para el parque experimental de Alaiz. Una ventaja importante que presenta esta metodología es que las propiedades el campo de viento real, presentes en las mediciones instantáneas del lidar de onda continua, puede dar paso a análisis adicionales como parte del trabajo a futuro. Dentro del marco del proyecto, el trabajo diario se realizó en las instalaciones de CENER, con supervisión cercana de la UPM, incluyendo una estancia de 1.5 meses en la universidad. Durante esta estancia, se definió el análisis matemático de las mediciones de viento realizadas por el equipo lidar de onda continua. Adicionalmente, los efectos del campo de viento no uniforme sobre el error de medición del lidar fueron analíticamente definidos, después de asumir algunas simplificaciones. Adicionalmente, durante la etapa inicial de este proyecto se desarrollo una importante trabajo de cooperación con DTU Wind Energy. Gracias a esto, el autor realizó una estancia de 1.5 meses en Dinamarca. Durante esta estancia, el autor realizó una visita a la campaña de medición en terreno llano con el fin de aprender los aspectos básicos del diseño de campañas de medidas experimentales, el estudio del terreno y los alrededores y familiarizarse con la instrumentación del mástil meteorológico, el sistema de adquisición y almacenamiento de datos, así como de el estudio y reporte del análisis de mediciones. ABSTRACT The present report summarizes the research work performed during last 4.5 years of investigation on the sources of lidar bias due to complex terrain. This work corresponds to one task of the remote sensing work package, belonging to the FP7 WAUDIT project. Furthermore, the field data from the wind velocity measurement campaigns of the FP7 SafeWind project have been used in this report. The main objective of this research work is to determine the terrain effects on the lidar bias in the measured wind velocity. With this knowledge, it is possible to propose a lidar bias correction methodology. This methodology is based on an estimation of the wind field variations within the lidar scan volume. The wind field variations are calculated from RANS simulations performed from the Alaiz test site. The methodology is validated against real scale measurements recorded during an eight month measurement campaign at the Alaiz test site. Firstly, the mathematical framework of the lidar sensing principle is introduced and an overview of the state of the art is presented. The experimental part includes the study of two different, but complementary experiments. The first experiment was a measurement campaign performed in flat terrain, at DTU Wind Energy H0vs0re test site, while the second experiment was performed in complex terrain at CENER Alaiz test site. Exactly the same two lidar devices, based on continuous wave and pulsed wave systems, have been used in the two consecutive measurement campaigns, making this a relevant experiment in the context of wind resource assessment. The wind velocity was sensed by the lidars and standard cup anemometry and wind vanes (installed on a met mast). The met mast sensors are considered as the reference wind velocity measurements. The first analysis of the experimental data is dedicated to identify the main sources of lidar bias present in the 10 minute average values. The purpose is to identify the bias magnitude introduced by different atmospheric conditions and by the non-uniform wind flow resultant of the terrain irregularities. The lidar bias as function of several statistical properties of the wind flow like the tilt angle, turbulence intensity, vertical velocity, atmospheric stability and the terrain characteristics have been studied. The aim of this exercise is to use this knowledge in order to define useful lidar bias data filters. Then, a methodology to correct the lidar bias caused by non-uniform wind flow is proposed, based on the initial mathematical analysis of the lidar measurements. The proposed lidar bias correction methodology has been developed focusing on the the continuous wave lidar system. In a last step, the proposed lidar bias correction methodology is validated with the data of the complex terrain measurement campaign. The methodology makes use of the wind field variations obtained from the RANS analysis. The results are presented and discussed. The advantage of this methodology is that the wind field properties at the Alaiz test site can be studied with more detail, based on the instantaneous measurements of the CW lidar. Within the project framework, the daily basis work has been done at CENER, with close guidance and support from the UPM, including an exchange period of 1.5 months. During this exchange period, the mathematical analysis of the lidar sensing of the wind velocity was defined. Furthermore, the effects of non-uniform wind fields on the lidar bias were analytically defined, after making some assumptions for the sake of simplification. Moreover, there has been an important cooperation with DTU Wind Energy, where a secondment period of 1.5 months has been done as well. During the secondment period at DTU Wind Energy, an important introductory learning has taken place. The learned aspects include the design of an experimental measurement campaign in flat terrain, the site assessment study of obstacles and terrain conditions, the data acquisition and processing, as well as the study and reporting of the measurement analysis.
Resumo:
The study of the many types of natural and manmade cavities in different parts of the world is important to the fields of geology, geophysics, engineering, architectures, agriculture, heritages and landscape. Ground-penetrating radar (GPR) is a noninvasive geodetection and geolocation technique suitable for accurately determining buried structures. This technique requires knowing the propagation velocity of electromagnetic waves (EM velocity) in the medium. We propose a method for calibrating the EM velocity using the integration of laser imaging detection and ranging (LIDAR) and GPR techniques using the Global Navigation Satellite System (GNSS) as support for geolocation. Once the EM velocity is known and the GPR profiles have been properly processed and migrated, they will also show the hidden cavities and the old hidden structures from the cellar. In this article, we present a complete study of the joint use of the GPR, LIDAR and GNSS techniques in the characterization of cavities. We apply this methodology to study underground cavities in a group of wine cellars located in Atauta (Soria, Spain). The results serve to identify construction elements that form the cavity and group of cavities or cellars. The described methodology could be applied to other shallow underground structures with surface connection, where LIDAR and GPR profiles could be joined, as, for example, in archaeological cavities, sewerage systems, drainpipes, etc.
Resumo:
The underground cellars that appear in different parts of Spain are part of an agricultural landscape dispersed, sometimes damaged, others at risk of disappearing. This paper studies the measurement and display of a group of wineries located in Atauta (Soria), in the Duero River corridor.