994 resultados para LAPO4-CE
Resumo:
Nanocrystals of KMgF3 single-doped and codoped with Ce3+ or/and Yb3+ were synthesized separately by the microemulsion method. The X-ray diffraction(XRD) patterns were indexed to show that the KMgF, crystal system was unchanged. The fluorescent spectra of KMgF3:Ce, Yb polycrystal powders were studied and compared with those of the Ce, Yb doped KMgF3 crystals produced using the high-temperature solid phase method. The diffuse reflection spectra and infrared. emission of KMgF3:Ce, Yb were investigated. From the results, the authors could confirm that there were charge transfer processes from Ce3+ to Yb3+ in both KMgF3: Ce,Yb nanocrystals and polycrystal powders.
Resumo:
采用微乳液法合成了KZnF3∶Ce3+纳米颗粒.分析了样品的结构与形态,结果表明:所合成的样品为单相,颗粒粒度分布均匀.讨论了光谱特性,并与高温固相法合成的产物作了对比.研究发现KZnF3∶Ce3+纳米晶的发射光谱与体相多晶相比,最强谱峰位置红移约35 nm,谱带半高宽加宽约12 nm.
Resumo:
Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3 (RE=Ce, Dy) hydrogen storage electrode alloys have been investigated using XRD, FESEM-EDS, ICP-MS and EIS measurements. The alloy is composed of V-based solid solution phase with a dendritic shape and a continuous C14 Laves phase with a network shape surrounding the dendrite. Pressure-composition isotherm curves indicate that the alloy with Dy addition has a lower equilibrium hydrogen pressure and a wider plateau region. The alloy electrode with Dy addition has higher discharge capacity, while the alloy electrode with Ce addition has better activation and higher cycle stability. The alloy electrode with Ce addition has better electrochemical activity with higher exchange current density (127.5 mA g(-1)), lower charge transfer resistance (1.37 Omega) and lower apparent activation energy (30.5 kJ mol(-1)). The capacity degradation behavior for the alloy electrode is attributed to two main factors: one is the dissolutions of V and Zr element to KOH solution, and another is the larger charge transfer resistance which increases with increasing cycle number.
Resumo:
研究了Pr3+,Sm3+掺杂对YAG∶Ce发射光谱及其荧光寿命的影响。观察到当掺杂Pr3+时,在609nm处出现Pr3+的发射峰,而掺杂Sm3+时,在616nm处呈现Sm3+的发射峰。掺杂Pr3+或Sm3+增加红光区的发射峰将有利于提高YAG∶Ce荧光粉的显色性。实验中测定了(Y0.95Sm0.01Ce0.04)3Al5O12、(Y0.95Pr0.01Ce0.04)3Al5O12、(Y0.96Ce0.04)3Al5O12的荧光寿命(τ),观察到在YAG∶Ce中掺入Pr3+或Sm3+使Ce3+的荧光寿命减小。实验结果表明,少量掺杂Pr3+或Sm3+并未引起基质的结构的变化。
Resumo:
Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H-2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y2O3), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr2O7 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAl11O19 (R=La, Nd; Me=Mg, Ca, Sr) and LaPO4. The concept of double-ceramic-layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.
Resumo:
A series of cerium dioxide (CeO2,)/polyimide (PI) nanocomposites were successfully prepared from Ce(Phen)(3) and polyamic acid (PAA) via the solution direct-dispersing method, followed by a step thermal imidization process. TGA and XPS studies showed that the cerium complex decomposed to form CeO2, during the thermal imidization process at 300 degrees C. SEM observation showed that the formed CeO2, as nalloparticles was well dispersed in polyimide matrix with a size of about 50-100 nm for samples with different contents of CeO2. Thermal analysis indicated that the introduction of CeO2, decreased the thermal stability of nanocomposite films due to the decomposition of Ce(Phen)(3) in the imidization process, while the glass transition temperature (T-g) increased obviously. especially nanocomposite films with high loading of CeO2 exhibited a trend of disappearance off, DMTA and static tensile measurements showed that the storage modulus of nanocomposite films increased, while the elongation at break decreased with increasing CeO2 content.
Resumo:
The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)(2)Ni-9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCU5-type structure. The abundance of the La(La, Mg)(2)Ni-9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g(-1) (x = 0.1) to 68.3 mAh g(-1) (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g(-1), the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.
Resumo:
CE/tris(2,2-bipyridyl) ruthenium(ll) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL), CEECL, with an ionic liquid (IL) detection system was established for the determination of bioactive constituents in Chinese traditional medicine opium poppy which contain large amounts of coexistent substances. A minimal sample pretreatment which involves a one-step extraction approach avoids both sample loss and environmental pollution. As the nearby hydroxyl groups in some alkaloid such as morphine may react with borate to form complexes and IL, as a high-conductivity additive in running buffer, could cause an enhanced field-amplified effect of electrokinetic injection. Running buffer containing 25 mM borax-8 mM 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF(4)) IL (pH 9.18) was used which resulted in significant changes in separation selectivity and obvious enhancement in ECL intensities for those alkaloids with similar structures. Sensitive detection could be achieved when the distance between the Pt working electrode and the outlet of separation capillary was set at 150 mu m and the stainless steel cannula was fixed approximately 1 cm away from the outlet of the capillary. Quantitative analysis of four alkaloids was achieved at a detection voltage of 1.2 V and a separation voltage of 15 kV in less than 7 min.
Resumo:
A facile CE method coupled with tris(2,2'-bipyridyl) ruthenium(ll)-based electrochem iluminescence [Ru(bpy)(3)(2+)] detection was developed for simultaneous determination of Aconitum alkaloids, i.e., hypaconitine (HA), aconitine (AC), and mesaconitine (MA) in baseline separation. The optimal separation of these Aconitum alkaloids was achieved in a fused-silica capillary column (50 cm x 25 mu m id) with 30 mM phosphate solution (pH 8.40) as running buffer at 12 kV applied voltage. The three alkaloids can be determined within 10 min by a single run. The calibration curves showed a linear range from 2.0 x 10(-7) to 2.0 x 10(-5) M for HA, 3.4 x 10(-7) to 1.7 x 10(-5) M for AC, and 3.8 x 10(-7) to 1.9 x 10(-5) M for MA. The RSDs; for all analytes were below 3.01%. Good linear relationships were found with correlation coefficients for all analytes exceeding 0.993. The detection limits were 2.0 x 10(-8) M for HA, 1.7 x 10(-7) M for AC, and 1.9 x 10(-7) M for MA under optimal conditions. This method was successfully applied to determine the three alkaloids in Aconitum plants.
CE coupling with end-column electrochemiluminescence detection for chiral separation of disopyramide
Resumo:
CE with electrochemiluminescence, (ECL) detection technique was successfully applied for the chiral separation of a kind of class IA antiarrhythmic racemic drug. To the best of our knowledge, this is the first report of ECL detection used in chiral CE. To get better detection sensitivity and good enantioresolution at the same time, the conditions of capillary inlet and outlet buffer were systematically optimized. Unlike the traditional chiral separation method, the buffers we used in the capillary inlet and outlet differed from each other in terms of buffer pH, ionic strength, type of BGE as well as buffer composition. Under the optimum conditions, baseline enantioseparation and highly sensitive detection of the enantiomers were achieved. Wide linear relationship of each enantiomer was achieved in the range of 5 x 10(-7) to 2 x 10(-5) mol/L with relative coefficients of 0.996 and 0.997, respectively. The detection limits were estimated to be 8 x 10(-8) and 1.0 X 10(-7) mol/L (S/N = 3) for the enantiomers, respectively. In addition, a successful application of this new method to the chiral separation of the racemic drug in spiked plasma samples confirmed the validity and applicability of the chiral CE-ECL method.
Resumo:
LaPO4: Ce3+ and LaPO4: Ce3+, Tb3+ phosphor layers have been deposited successfully on monodispersed and spherical SiO2 particles of different sizes ( 300, 500, 900 and 1200 nm) through a sol - gel process, resulting in the formation of core - shell structured SiO2@ LaPO4: Ce3+/ Tb3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microcopy (SEM), transmission electron microscopy (TEM), and general and time-resolved photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO2@ LaPO4: Ce3+/ Tb3+ samples. The XRD results demonstrate that the LaPO4: Ce3+, Tb3+ layers begin to crystallize on the SiO2 templates after annealing at 700 degrees C, and the crystallinity increases on raising the annealing temperature. The obtained core - shell phosphors have perfectly spherical shape with a narrow size distribution, non-agglomeration, and a smooth surface. The doped rare-earth ions show their characteristic emission in the core - shell phosphors, i.e. Ce3+ 5d - 4f and Tb3+5D4 - F-7(J) (J = 6 - 3) transitions, respectively. The PL intensity of the Tb3+ increased on increasing the annealing temperature and the SiO2 core particle size.
Resumo:
A simple, efficient and quick method has been established for the synthesis of CePO4:Tb nanorods and CePO4:Tb/LaPO4 core/shell nanorods via ultrasound irradiation of inorganic salt aqueous solution under ambient conditions for 2 h. The as-prepared products were characterized by means of powder x-ray diffraction (PXRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction ( SAED), x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra and lifetimes. TEM micrographs show that all of the as-prepared cerium phosphate products have rod-like shape, and have a relatively high degree of crystallinity and uniformity. HRTEM micrographs and SAED results prove that these nanorods are single crystalline in nature. The emission intensity and lifetime of the CePO4:Tb/LaPO4 core/shell nanorods increased significantly with respect to those of CePO4: Tb core nanorods under the same conditions. A substantial reduction in reaction time as well as reaction temperature is observed compared with the hydrothermal process.
Resumo:
Ce and MgO were added simultaneously to La-Sr-Ni-O catalyst and a substantial enhancement of activity for NO decomposition was observed, which may be attributed to the formation of a new highly active site caused by the addition of Ce and MgO.
Resumo:
Calcium lanthanide oxyborate doped with rare-earth ions LnCa(4)O(BO3)(3):RE3+ (LnCOB:RE, Ln = Y, La, Gd, RE = Eu, Tb, Dy, Cc) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos' and J phi rgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. J phi rgensen. Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band E-ct were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd ions transfer the energy from itself to Dy.
Resumo:
A new compound Ce(6-x)Ln(x)MoO(15-delta) has been synthesized by wet-chemistry method. Their crystal structure and oxide ionic conductivity were characterized by powder X-ray diffraction, Raman, IR spectrum and A.C. impedance technique. The XRD results showed that Ce6MO15-delta, Ce(5)LnMoO(15-delta) have cubic symmetry with Fm3m space group. The refined lattice parameters showed that their lattice constants decrease with the decrease of the ionic radius of Ln(3+). The electrochemical measurements showed that the ionic conductivity of resulting oxides Ce(6-x)Ln(x)MoO(15-delta) have an enhance, which may be a kind of promising material for SOFCs.