935 resultados para Key topics in conservation biology
Resumo:
BACKGROUND: Exposure of adherent cells to DNA damaging agents, such as the bacterial cytolethal distending toxin (CDT) or ionizing radiations (IR), activates the small GTPase RhoA, which promotes the formation of actin stress fibers and delays cell death. The signalling intermediates that regulate RhoA activation and promote cell survival are unknown. PRINCIPAL FINDINGS: We demonstrate that the nuclear RhoA-specific Guanine nucleotide Exchange Factor (GEF) Net1 becomes dephosphorylated at a critical inhibitory site in cells exposed to CDT or IR. Expression of a dominant negative Net1 or Net1 knock down by iRNA prevented RhoA activation, inhibited the formation of stress fibers, and enhanced cell death, indicating that Net1 activation is required for this RhoA-mediated responses to genotoxic stress. The Net1 and RhoA-dependent signals involved activation of the Mitogen-Activated Protein Kinase p38 and its downstream target MAPK-activated protein kinase 2. SIGNIFICANCE: Our data highlight the importance of Net1 in controlling RhoA and p38 MAPK mediated cell survival in cells exposed to DNA damaging agents and illustrate a molecular pathway whereby chronic exposure to a bacterial toxin may promote genomic instability.
Resumo:
UPTAKE AND METABOLISM OF 5’-AMP IN THE ERYTHROCYTE PLAY KEY ROLES IN THE 5’-AMP INDUCED MODEL OF DEEP HYPOMETABOLISM Publication No. ________ Isadora Susan Daniels, B.A. Supervisory Professor: Cheng Chi Lee, Ph.D. Mechanisms that initiate and control the natural hypometabolic states of mammals are poorly understood. The laboratory developed a model of deep hypometabolism (DH) initiated by uptake of 5’-adenosine monophosphate (5’-AMP) into erythrocytes. Mice enter DH when given a high dose of 5’-AMP and the body cools readily. Influx of 5’-AMP appears to inhibit thermoregulatory control. In a 15°C environment, mice injected with 5’-AMP (0.5 mg/gw) enter a Phase I response in which oxygen consumption (VO2) drops rapidly to 1/3rd of euthermic levels. The Phase I response appears independent of body temperature (Tb). This is followed by gradual body temperature decline that correlates with VO2 decline, called Phase II response. Within 90 minutes, mouse Tb approaches 15°C, and VO2 is 1/10th of normal. Mice can remain several hours in this state, before gradually and safely recovering. The DH state translates to other mammalian species. Our studies show uptake and metabolism of 5’-AMP in erythrocytes causes biochemical changes that initiate DH. Increased AMP shifts the adenylate equilibrium toward ADP formation, consequently decreasing intracellular ATP. In turn, glycolysis slows, indicated by increased glucose and decreased lactate. 2,3-bisphosphoglycerate levels rise, allosterically reducing oxygen affinity for hemoglobin, and deoxyhemoglobin rises. Less oxygen transport to tissues likely triggers the DH model. The major intracellular pathway for AMP catabolism is catalyzed by AMP deaminase (AMPD). Multiple AMPD isozymes are expressed in various tissues, but erythrocytes only have AMPD3. Mice lacking AMPD3 were created to study control of the DH model, specifically in erythrocytes. Telemetric measurements demonstrate lower Tb and difficulty maintaining Tb under moderate metabolic stress. A more dramatic response to lower dose of 5’-AMP suggests AMPD activity in the erythrocyte plays an important role in control of the DH model. Analysis of adenylates in erythrocyte lysate shows 3-fold higher levels of ATP and ADP but similar AMP levels to wild-type. Taken together, results indicate alterations in energy status of erythrocytes can induce a hypometabolic state. AMPD3 control of AMP catabolism is important in controlling the DH model. Genetically reducing AMP catabolism in erythrocytes causes a phenotype of lower Tb and compromised ability to maintain temperature homeostasis.
Resumo:
Understanding Nanog’s Role in Cancer Biology Mark Daniel Badeaux Supervisory Professor Dean Tang, PhD The cancer stem cell model holds that tumor heterogeneity and population-level immortality are driven by a subset of cells within the tumor, termed cancer stem cells. Like embryonic or somatic stem cells, cancer stem cells are believed to possess self-renewal capacity and the ability to give rise to a multitude of varieties of daughter cell. Because of cancer’s implied connections to authentic stem cells, we screened a variety of prostate cancer cell lines and primary tumors in order to determine if any notable ‘stemness’ genes were expressed in malignant growths. We found a promising lead in Nanog, a central figure in maintaining embryonic stem cell pluripotency, and through a variety of experiments in which we diminished Nanog expression, found that it may play a significant role in prostate cancer development. We then created a transgenic mouse model in which we targeted Nanog expression to keratin 14-expressing in order to assess its potential contribution to tumorigenesis. We found a variety of developmental abnormalities and altered differentiation patterns in our model , but much to our chagrin we observed neither spontaneous tumor formation nor premalignant changes in these mice, but instead surprisingly found that high levels of Nanog expression inhibited tumor formation in a two-stage skin carcinogenesis model. We also noted a depletion of skin stem cell populations, which underlies the wound-healing defect our mice harbor as well. Gene expression analysis shows a reduction in c-Jun and Bmp5, two genes whose loss inhibits skin tumor development and reduces stem cell counts respectively. As we further explored Nanog’s activity in prostate cancer, it became apparent that the protein oftentimes was not expressed. Emboldened by the competing endogenous RNA (ceRNA) hypothesis, we identified the Nanog 3’UTR as a regulator of the tumor suppressive microRNA 128a (miR-128a), which includes known oncogenes such as Bmi1 among its authentic targets. Future work will necessarily involve discerning instances in which Nanog mRNA is the biologically relevant molecule, as well as identifying additional mRNA species which may serve solely as a molecular sink for miR-128a.
Developmental changes in sleep biology and potential effects on adolescent behavior and caffeine use
Resumo:
Adolescent development includes changes in the biological regulatory processes for the timing of sleep. Circadian rhythm changes and changes to the sleep-pressure system (sleep homeostasis) during adolescence both favor later timing of sleep. These changes, combined with prevailing social pressures, are responsible for most teens sleeping too late and too little; those who sleep least report consuming more caffeine. Although direct research findings are scarce, the likelihood of use and abuse of caffeine-laden products grows across the adolescent years due, in part, to excessive sleepiness
Resumo:
Ancient Kinneret (Tēl Kinrōt [Hebrew]; Tell el-ʿOrēme [Arabic]) is located on a steep limestone hill on the northwestern shores of the Sea of Galilee (2508.7529 [NIG]). The site, whose settlement history began sometime during the Pottery-Neolithic or the early Chalcolithic period, is emerging as one of the major sites for the study of urban life in the Southern Levant during the Early Iron Age (c. 1130–950 BCE). Its size, accessibility by major trade routes, and strategic location between different spheres of cultural and political influence make Tēl Kinrōt an ideal place for studying the interaction of various cultures on urban sites, as well as to approach questions of ethnicity and regionalism during one of the most debated periods in the history of the ancient Levant. The paper will briefly discuss the settlement history of the site during the Early Iron Age. However, the main focus will lie on the material culture of the late Iron Age IB city that rapidly evolved to a regional center during the transition from the 11th to the 10th century BCE. During this period, ancient Kinneret features a multitude of cultural influences that reach from Egypt via the Central Hill Country until the Northern parts of Syria and the Amuq region. While there are indisputably close ties with the ‘Aramaean’ realm, there are also strong indications that there were – at the same time – vivid socio-economic links with the West, i.e. the Southern and Northern Mediterranean coasts and their hinterland. It will be argued that the resulting ‘cultural blend’ is a typical characteristic of the material culture of the Northern Jordan Rift Valley in the advent of the emerging regional powers of the Iron Age II.
Resumo:
The Astronomical Institute of the University of Bern (AIUB) is conducting several search campaigns for orbital debris. The debris objects are discovered during systematic survey observations. In general only a short observation arc, or tracklet, is available for most of these objects. From this discovery tracklet a first orbit determination is computed in order to be able to find the object again in subsequent follow-up observations. The additional observations are used in the orbit improvement process to obtain accurate orbits to be included in a catalogue. In this paper, the accuracy of the initial orbit determination is analyzed. This depends on a number of factors: tracklet length, number of observations, type of orbit, astrometric error, and observation geometry. The latter is characterized by both the position of the object along its orbit and the location of the observing station. Different positions involve different distances from the target object and a different observing angle with respect to its orbital plane and trajectory. The present analysis aims at optimizing the geometry of the discovery observation is depending on the considered orbit.
Resumo:
The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1-hydroxypyrene was detected in bile of fish from all sites. All endpoints in combination with the chemical data suggest a pivotal role of PAHs in the observed ecotoxicological impacts.
Resumo:
Due to its extraordinary biodiversity and rapid deforestation, north-eastern Madagascar is a conservation hotspot of global importance. Reducing shifting cultivation is a high priority for policy-makers and conservationists; however, spatially explicit evidence of shifting cultivation is lacking due to the difficulty of mapping it with common remote sensing methods. To overcome this challenge, we adopted a landscape mosaic approach to assess the changes between natural forests, shifting cultivation and permanent cultivation systems at the regional level from 1995 to 2011. Our study confirmed that shifting cultivation is still being used to produce subsistence rice throughout the region, but there is a trend of intensification away from shifting cultivation towards permanent rice production, especially near protected areas. While large continuous forest exists today only in the core zones of protected areas, the agricultural matrix is still dominated by a dense cover of tree crops and smaller forest fragments. We believe that this evidence makes a crucial contribution to the development of interventions to prevent further conversion of forest to agricultural land while improving local land users' well-being.
Resumo:
A three-level satellite to ground monitoring scheme for conservation easement monitoring has been implemented in which high-resolution imagery serves as an intermediate step for inspecting high priority sites. A digital vertical aerial camera system was developed to fulfill the need for an economical source of imagery for this intermediate step. A method for attaching the camera system to small aircraft was designed, and the camera system was calibrated and tested. To ensure that the images obtained were of suitable quality for use in Level 2 inspections, rectified imagery was required to provide positional accuracy of 5 meters or less to be comparable to current commercially available high-resolution satellite imagery. Focal length calibration was performed to discover the infinity focal length at two lens settings (24mm and 35mm) with a precision of O.1mm. Known focal length is required for creation of navigation points representing locations to be photographed (waypoints). Photographing an object of known size at distances on a test range allowed estimates of focal lengths of 25.lmm and 35.4mm for the 24mm and 35mm lens settings, respectively. Constants required for distortion removal procedures were obtained using analytical plumb-line calibration procedures for both lens settings, with mild distortion at the 24mm setting and virtually no distortion found at the 35mm setting. The system was designed to operate in a series of stages: mission planning, mission execution, and post-mission processing. During mission planning, waypoints were created using custom tools in geographic information system (GIs) software. During mission execution, the camera is connected to a laptop computer with a global positioning system (GPS) receiver attached. Customized mobile GIs software accepts position information from the GPS receiver, provides information for navigation, and automatically triggers the camera upon reaching the desired location. Post-mission processing (rectification) of imagery for removal of lens distortion effects, correction of imagery for horizontal displacement due to terrain variations (relief displacement), and relating the images to ground coordinates were performed with no more than a second-order polynomial warping function. Accuracy testing was performed to verify the positional accuracy capabilities of the system in an ideal-case scenario as well as a real-world case. Using many welldistributed and highly accurate control points on flat terrain, the rectified images yielded median positional accuracy of 0.3 meters. Imagery captured over commercial forestland with varying terrain in eastern Maine, rectified to digital orthophoto quadrangles, yielded median positional accuracies of 2.3 meters with accuracies of 3.1 meters or better in 75 percent of measurements made. These accuracies were well within performance requirements. The images from the digital camera system are of high quality, displaying significant detail at common flying heights. At common flying heights the ground resolution of the camera system ranges between 0.07 meters and 0.67 meters per pixel, satisfying the requirement that imagery be of comparable resolution to current highresolution satellite imagery. Due to the high resolution of the imagery, the positional accuracy attainable, and the convenience with which it is operated, the digital aerial camera system developed is a potentially cost-effective solution for use in the intermediate step of a satellite to ground conservation easement monitoring scheme.