893 resultados para KISS1 GENE-EXPRESSION
Resumo:
BACKGROUND: Histologic grade in breast cancer provides clinically important prognostic information. However, 30%-60% of tumors are classified as histologic grade 2. This grade is associated with an intermediate risk of recurrence and is thus not informative for clinical decision making. We examined whether histologic grade was associated with gene expression profiles of breast cancers and whether such profiles could be used to improve histologic grading. METHODS: We analyzed microarray data from 189 invasive breast carcinomas and from three published gene expression datasets from breast carcinomas. We identified differentially expressed genes in a training set of 64 estrogen receptor (ER)-positive tumor samples by comparing expression profiles between histologic grade 3 tumors and histologic grade 1 tumors and used the expression of these genes to define the gene expression grade index. Data from 597 independent tumors were used to evaluate the association between relapse-free survival and the gene expression grade index in a Kaplan-Meier analysis. All statistical tests were two-sided. RESULTS: We identified 97 genes in our training set that were associated with histologic grade; most of these genes were involved in cell cycle regulation and proliferation. In validation datasets, the gene expression grade index was strongly associated with histologic grade 1 and 3 status; however, among histologic grade 2 tumors, the index spanned the values for histologic grade 1-3 tumors. Among patients with histologic grade 2 tumors, a high gene expression grade index was associated with a higher risk of recurrence than a low gene expression grade index (hazard ratio = 3.61, 95% confidence interval = 2.25 to 5.78; P < .001, log-rank test). CONCLUSIONS: Gene expression grade index appeared to reclassify patients with histologic grade 2 tumors into two groups with high versus low risks of recurrence. This approach may improve the accuracy of tumor grading and thus its prognostic value.
Resumo:
Anaplastic large cell lymphoma (ALCL) is a main type of T-cell lymphomas and comprises three distinct entities: systemic anaplastic lymphoma kinase (ALK) positive, systemic ALK(-) and cutaneous ALK(-) ALCL (cALCL). Little is known about their pathogenesis and their cellular origin, and morphological and immunophenotypical overlap exists between ALK(-) ALCL and classical Hodgkin lymphoma (cHL). We conducted gene expression profiling of microdissected lymphoma cells of five ALK(+) and four ALK(-) systemic ALCL, seven cALCL and sixteen cHL, and of eight subsets of normal T and NK cells. The analysis supports a derivation of ALCL from activated T cells, but the lymphoma cells acquired a gene expression pattern hampering an assignment to a CD4(+), CD8(+) or CD30(+) T-cell origin. Indeed, ALCL display a down-modulation of many T-cell characteristic molecules. All ALCL types show significant expression of NFkappaB target genes and upregulation of genes involved in oncogenesis (e.g. EZH2). Surprisingly, few genes are differentially expressed between systemic and cALCL despite their different clinical behaviour, and between ALK(-) ALCL and cHL despite their different cellular origin. ALK(+) ALCL are characterized by expression of genes regulated by pathways constitutively activated by ALK. This study provides multiple novel insights into the molecular biology and pathogenesis of ALCL.
Resumo:
Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalisisolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.
Resumo:
Cytochrome P450 1A1 (CYP1A1), like many monooxygenases, can produce reactive oxygen species during its catalytic cycle. Apart from the well-characterized xenobiotic-elicited induction, the regulatory mechanisms involved in the control of the steady-state activity of CYP1A1 have not been elucidated. We show here that reactive oxygen species generated from the activity of CYP1A1 limit the levels of induced CYP1A1 mRNAs. The mechanism involves the repression of the CYP1A1 gene promoter activity in a negative-feedback autoregulatory loop. Indeed, increasing the CYP1A1 activity by transfecting CYP1A1 expression vectors into hepatoma cells elicited an oxidative stress and led to the repression of a reporter gene driven by the CYP1A1 gene promoter. This negative autoregulation is abolished by ellipticine (an inhibitor of CYP1A1) and by catalase (which catalyzes H(2)O(2) catabolism), thus implying that H(2)O(2) is an intermediate. Down-regulation is also abolished by the mutation of the proximal nuclear factor I (NFI) site in the promoter. The transactivating domain of NFI/CTF was found to act in synergy with the arylhydrocarbon receptor pathway during the induction of CYP1A1 by 2,3,7,8-tetrachloro-p-dibenzodioxin. Using an NFI/CTF-Gal4 fusion, we show that NFI/CTF transactivating function is decreased by a high activity of CYP1A1. This regulation is also abolished by catalase or ellipticine. Consistently, the transactivating function of NFI/CTF is repressed in cells treated with H(2)O(2), a novel finding indicating that the transactivating domain of a transcription factor can be targeted by oxidative stress. In conclusion, an autoregulatory loop leads to the fine tuning of the CYP1A1 gene expression through the down-regulation of NFI activity by CYP1A1-based H(2)O(2) production. This mechanism allows a limitation of the potentially toxic CYP1A1 activity within the cell.
Resumo:
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.
Resumo:
PURPOSE: Retinal degeneration is associated with iron accumulation in several rodent models in which iron-regulating proteins are impaired. Oxidative stress is catalyzed by unbound iron. METHODS: The role of the heavy chain of ferritin, which sequesters iron, in regulating the thickness of the photoreceptor nuclear layer in the 4- and 16-month-old wild-type H ferritin (HFt(+/+)) and heterozygous H ferritin (HFt(+/-)) mice was investigated, before and 12 days after exposure to 13,000-lux light for 24 hours. The regulation of gene expression of the various proteins involved in iron homeostasis, such as transferrin, transferrin receptor, hephaestin, ferroportin, iron regulatory proteins 1 and 2, hepcidin, ceruloplasmin, and heme-oxygenase 1, was analyzed by quantitative (q)RT-PCR during exposure (2, 12, and 24 hours) and 24 hours after 1 day of exposure in the 4-month-old HFt(+/+) and HFt(+/-) mouse retinas. RESULTS: Retinal degeneration in the 4-month-old HFt(+/-) mice was more extensive than in the HFt(+/+) mice. Yet, it was more extensive in both of the 16-month-old mouse groups, revealing the combined effect of age and excessive light. Injury caused by excessive light modified the temporal gene expression of iron-regulating proteins similarly in the HFt(+/-) and HFt(+/+) mice. CONCLUSIONS: Loss of one allele of H ferritin appears to increase light-induced degeneration. This study highlighted that oxidative stress related to light-induced injury is associated with major changes in gene expression of iron metabolism proteins.
Resumo:
During T cell development in the thymus, T cell receptor (TCR) alpha, beta, gamma, and delta genes are rearranged and expressed. TCR rearrangement strictly depends upon the coordinate activity of two recombinase activating genes, Rag-1 and Rag-2. In this study we have followed the expression of these genes at different stages of intrathymic development. The results indicate that there are two periods of high Rag-1 and Rag-2 mRNA expression. The first wave peaks early at the CD25+CD4-CD8-CD3- stage of development and coincides with the initial appearance of transcripts derived from fully rearranged TCR beta, gamma, and delta genes, whereas the second wave occurs later at the CD4+CD8+ stage coincident with full-length TCR alpha mRNA expression. Active downregulation of Rag-1 and Rag-2 mRNA expression appears to occur in vivo between the two peaks of recombinase activity. This phenomenon can be mimicked in vitro in response to artificial stimuli such as phorbol myristate acetate and calcium ionophore. Collectively our data suggest that recombinase expression is actively regulated during early thymus development independently of cell surface expression of a mature heterodimeric TCR protein complex.
Resumo:
Etant données la complexité et la redondance des réseaux de gènes influençant de nombreux phénotypes, l'étude des rares cas d'un locus unique ayant des effets importants sur de nombreux phénotypes peut fournir des informations cruciales sur l'évolution des traits complexes. Nous avons séquencé le génome de la fourmi de feu Solenopsis invicta pour étudier comment l'expression des gènes détermine les effets majeurs et étendus de deux loci uniques sur le phénotype. Le premier locus concerne la détermination du sexe par le modèle des allèles complémentaires. Ce locus est connu pour déterminer le sexe chez tous les hyménoptères mais n'a été caractérisé que chez les abeilles. Les hétérozygotes pour ce locus se développent en reines diploïdes (ou ouvrières stériles) alors que les homozygotes se développent en mâles diploïdes incapables de produire du sperme et les hémizygotes en mâles haploïdes fertiles. Nous avons comparé l'expression des gènes entre les reines et les deux types de mâles au stade pupe, ainsi que 1 et 11 jours après l'émergence. Nous avons trouvé un changement prononcé de l'expression des gènes chez les mâles diploïdes, passant de très proche de celle des reines au stade pupe à identique aux mâles haploïdes 11 jours après l'émergence. Cela signifie que les mâles diploïdes sont condamnés à être stériles parce que les effets après émergence du locus de détermination du sexe ne per¬mettent pas d'effacer les effets de la ploïdie sur l'expression des gènes pendant le stade pupe, quand la spermatogénèse prend place. Le second locus aux effets majeurs que nous avons étudié est le supergène dit "green beard", qui consiste en 616 gènes couvrant 55% d'un chromosome (13 Mb) et est caractérisé par une absence de recombinaison entre les deux variants du supergène : "Social B" et "Social b" (SB et Sb). Au travers de l'effet "green beard", par lequel les ouvrières avec le supergène Sb discriminent favorablement les reines qui partagent ce supergène de façon perceptible, le génotype des reines fondatrices au niveau de ce supergène détermine l'organisation de la colonie : soit elle contient une seule reine SB/SB, soit plusieurs reines SB/Sb. Nous avons montré que le chromosome Sb a évolué comme le chromosome Y, accumulant probablement des allèles favorables dans des colonies avec plusieurs reines mais défavorables dans des colonies avec une seule reine (cf. gènes sexuellement antagonistes), ainsi que des transposons et des séquences répéti¬tives. Nous avons également montré que le polymorphisme du supergène cause de grandes différences d'expression chez les ouvrières et particulièrement les reines mais pas chez les mâles. Pour comprendre comment le polymorphisme du supergène chez les reines peut affecter l'organisation de la colonie, nous avons comparé l'expression entre les génotypes SB/SB et SB/Sb chez des reines vierges (1 et 11 jours) et des reines matures. Nous avons montré que les reines SB/SB sur-régulent des gènes impliqués dans la reproduction, expli-quant pourquoi elle grandissent plus rapidement et peuvent fonder des colonies de façon indépendante, tandis que les reines SB/Sb (qui ne peuvent fonder une nouvelle colonie) sur-régulent des gènes de signalement chimique qui affectent l'organisation des colonies par l'effet "green beard". - Given the complexity and redundancy of the gene networks that underlie many pheno- types, the study of rare cases of a single locus having major effects on many phenotypes can give powerful insights into the evolution of complex traits. We sequenced the genome of Solenopsis invicta fire ants to study how gene expression mediates the widespread major effects of two single loci on phenotype. The first is the complementary sex-determining locus, which is known to exist in most Hymenoptera despite being characterized only for honeybees. Heterozygotes at this locus become diploid queens (or sterile workers), homozy¬gotes become aspermic diploid males, and hemizygotes become fertile haploid males. We compared gene expression between queens and both types of males in pupae and 1 and 11 days after eclosion. We found a pronounced shift in gene expression in diploid males, from being nearly identical to queens as pupae to identical to haploid males 11 days after eclosion. This means that diploid males are condemned to sterility because the overriding effects of the sex locus after eclosion cannot undo the ploidy effects on expression during the pupal stage, when spermatogenesis must be completed. The second locus with major ef¬fects that we studied was the so-called "green beard" supergene, which consists of 616 genes encompassing 55% of one chromosome (13 Mb), without recombination between the two variants "Social B" and "Social b" (SB and Sb) supergene. Through the green beard effect, i.e. workers with the Sb supergene discriminating in favor of queens who perceptibly share this supergene, the founding queen's genotype at the supergene determines colony organi¬zation: either headed by a single SB/SB queen or many SB/Sb queens. We show that the Sb chromosome evolved like a Y-chromosome, probably accumulating alleles beneficial in multi-queen colonies but disadvantageous in single-queen colonies (cf. sexually antagonistic genes), as well as transposons and repetitive sequences. We also show that the polymor¬phism of the supergene causes widespread expression differences in workers and especially queens but not in males. To understand how the polymorphism at the supergene in queen can transform colony organization, we compared the expression between SB/SB and SB/Sb virgin queens (1 and 11 days) and mother queens. We show that SB/SB queens up-regulate genes involved in reproduction, explaining why they mature faster and can found colonies independently, while SB/Sb queens (which cannot found colonies) up-regulate chemical signaling genes that can transform colonies through the green beard effect.
Resumo:
The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD; Zuber et al., Proc Natl Acad Sci USA 106:16523-16528, 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining the salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G-protein-coupled receptors or serine/threonine kinases exhibit high expression levels but remain unassigned to a specific renal function. We also established a list of genes differentially expressed between the DCT/CNT and the CCD. This list is enriched by genes related to segment-specific transport functions and by transcription factors directing the development of the distal nephron or collecting ducts. Collectively, this in silico analysis provides comprehensive information about relative abundance and tissue specificity of the DCT/CNT and the CCD expressed transcripts and identifies new candidate genes for renal homeostasis.
Resumo:
BACKGROUND & AIMS: The host immune response during the chronic phase of hepatitis C virus infection varies among individuals; some patients have a no interferon (IFN) response in the liver, whereas others have full activation IFN-stimulated genes (ISGs). Preactivation of this endogenous IFN system is associated with nonresponse to pegylated IFN-α (pegIFN-α) and ribavirin. Genome-wide association studies have associated allelic variants near the IL28B (IFNλ3) gene with treatment response. We investigated whether IL28B genotype determines the constitutive expression of ISGs in the liver and compared the abilities of ISG levels and IL28B genotype to predict treatment outcome. METHODS: We genotyped 109 patients with chronic hepatitis C for IL28B allelic variants and quantified the hepatic expression of ISGs and of IL28B. Decision tree ensembles, in the form of a random forest classifier, were used to calculate the relative predictive power of these different variables in a multivariate analysis. RESULTS: The minor IL28B allele was significantly associated with increased expression of ISG. However, stratification of the patients according to treatment response revealed increased ISG expression in nonresponders, irrespective of IL28B genotype. Multivariate analysis of ISG expression, IL28B genotype, and several other factors associated with response to therapy identified ISG expression as the best predictor of treatment response. CONCLUSIONS: IL28B genotype and hepatic expression of ISGs are independent predictors of response to treatment with pegIFN-α and ribavirin in patients with chronic hepatitis C. The most accurate prediction of response was obtained with a 4-gene classifier comprising IFI27, ISG15, RSAD2, and HTATIP2.
Resumo:
Background: The variety of DNA microarray formats and datasets presently available offers an unprecedented opportunity to perform insightful comparisons of heterogeneous data. Cross-species studies, in particular, have the power of identifying conserved, functionally important molecular processes. Validation of discoveries can now often be performed in readily available public data which frequently requires cross-platform studies.Cross-platform and cross-species analyses require matching probes on different microarray formats. This can be achieved using the information in microarray annotations and additional molecular biology databases, such as orthology databases. Although annotations and other biological information are stored using modern database models ( e. g. relational), they are very often distributed and shared as tables in text files, i.e. flat file databases. This common flat database format thus provides a simple and robust solution to flexibly integrate various sources of information and a basis for the combined analysis of heterogeneous gene expression profiles.Results: We provide annotationTools, a Bioconductor-compliant R package to annotate microarray experiments and integrate heterogeneous gene expression profiles using annotation and other molecular biology information available as flat file databases. First, annotationTools contains a specialized set of functions for mining this widely used database format in a systematic manner. It thus offers a straightforward solution for annotating microarray experiments. Second, building on these basic functions and relying on the combination of information from several databases, it provides tools to easily perform cross-species analyses of gene expression data.Here, we present two example applications of annotationTools that are of direct relevance for the analysis of heterogeneous gene expression profiles, namely a cross-platform mapping of probes and a cross-species mapping of orthologous probes using different orthology databases. We also show how to perform an explorative comparison of disease-related transcriptional changes in human patients and in a genetic mouse model.Conclusion: The R package annotationTools provides a simple solution to handle microarray annotation and orthology tables, as well as other flat molecular biology databases. Thereby, it allows easy integration and analysis of heterogeneous microarray experiments across different technological platforms or species.
Resumo:
Little is known about the relation between the genome organization and gene expression in Leishmania. Bioinformatic analysis can be used to predict genes and find homologies with known proteins. A model was proposed, in which genes are organized into large clusters and transcribed from only one strand, in the form of large polycistronic primary transcripts. To verify the validity of this model, we studied gene expression at the transcriptional, post-transcriptional and translational levels in a unique locus of 34kb located on chr27 and represented by cosmid L979. Sequence analysis revealed 115 ORFs on either DNA strand. Using computer programs developed for Leishmania genes, only nine of these ORFs, localized on the same strand, were predicted to code for proteins, some of which show homologies with known proteins. Additionally, one pseudogene, was identified. We verified the biological relevance of these predictions. mRNAs from nine predicted genes and proteins from seven were detected. Nuclear run-on analyses confirmed that the top strand is transcribed by RNA polymerase II and suggested that there is no polymerase entry site. Low levels of transcription were detected in regions of the bottom strand and stable transcripts were identified for four ORFs on this strand not predicted to be protein-coding. In conclusion, the transcriptional organization of the Leishmania genome is complex, raising the possibility that computer predictions may not be comprehensive.
Resumo:
We previously reported that excess of deoxycorticosterone-acetate (DOCA)/salt-induced cardiac hypertrophy in the absence of hypertension in one-renin gene mice. This model allows us to study molecular mechanisms of high-salt intake in the development of cardiovascular remodeling, independently of blood pressure in a high mineralocorticoid state. In this study, we compared the effect of 5-wk low- and high-salt intake on cardiovascular remodeling and cardiac differential gene expression in mice receiving the same amount of DOCA. Differential gene and protein expression was measured by high-density cDNA microarray assays, real-time PCR and Western blot analysis in DOCA-high salt (HS) vs. DOCA-low salt (LS) mice. DOCA-HS mice developed cardiac hypertrophy, coronary perivascular fibrosis, and left ventricular dysfunction. Differential gene and protein expression demonstrated that high-salt intake upregulated a subset of genes encoding for proteins involved in inflammation and extracellular matrix remodeling (e.g., Col3a1, Col1a2, Hmox1, and Lcn2). A major subset of downregulated genes encoded for transcription factors, including myeloid differentiation primary response (MyD) genes. Our data provide some evidence that vascular remodeling, fibrosis, and inflammation are important consequences of a high-salt intake in DOCA mice. Our study suggests that among the different pathogenic factors of cardiac and vascular remodeling, such as hypertension and mineralocorticoid excess and sodium intake, the latter is critical for the development of the profibrotic and proinflammatory phenotype observed in the heart of normotensive DOCA-treated mice.