959 resultados para Jiaozhou bay
Resumo:
228pp. (pdf contains 257 pages)
Resumo:
In addition to describing the species of tunicates found areound Monterey Bay California, it provides a taxonomic key. This is a student paper done for a University of California Berkeley Zoology class. Since UCB didn't have its own marine lab at the time, it rented space at Hopkins Marine Station where this work was done. Donald Putnam Abbott went on to earn his Ph.D. from Berkeley and later became a Stanford professor at Hopkins Marine Station. (PDF contains 35 pages)
Resumo:
The last decade has seen the development and application of a spectrum of physical and numerical hydrographic models of the Chesapeake Bay and its tributaries. The success of the James River Hydraulic Model has initiated the construction of an estuarine hydraulic model of the entire Chesapeake System. Numerical analogues for hydrographic behavior and contaminant dispersion in one-, two-, and three dimensional model estuaries exist for various regions of the Bay. From an engineering viewpoint, one dimensional models are sufficiently advanced to be routinely employed in aiding management decisions. Bay investigators are playing leading roles in the development of two- and three-dimensional models of estuarine flows.
Resumo:
This is a student paper done for a University of California Berkeley Zoology class. Since UCB didn't have its own marine lab at the time, it rented space at Hopkins Marine Station where this work was done. Cadet Hand earned his Ph.D. from Berkeley and went on to become Director of the Bodega Marine Laboratory. (PDF contains 36 pages)
Resumo:
The most critical long-term threat to the continued health of the Chesapeake Bay is the addition of excess nutrients to the estuarine waters. Other problems, such as Kepone and the disappearance of aquatic vegetation (which is possibly linked with nutrient loading), may steal our attention for short periods,but these difficulties will, hopefully, recede in due time. The projected growth of population in the near environs of the Bay, however, indicates that,as a problem, eutrophication will probably continue well into the next century
Resumo:
(PDF contains 88 pages.)
Resumo:
The overall goal of this study was to develop a new fishery resource product through open-water aquaculture for the west coast of Florida that would compete as a non-traditional product through market development. Specific objectives were as follows: I. To grow a minimum of 50, 000 juvenile scallops to a minimum market size of40 mm in a cage and float system in the off-shore waters of Crystal River, Florida. 2. To determine the growth rate, survival, and time to market size for the individuals in this system and area to other similar projects like Virginia. 3. To introduce local fishermen and the aquaculture students at Crystal River High School to the hatchery, nursery, and grow-out techniques. 4. To determine the economic and financial characteristics of bay scallop culture in Florida and assess the sensitivity of projected costs and earnings to changes in key technical, managerial, and market related parameters. 5. To determine the market acceptability and necessary marketing strategy for whole bay scallop product in Florida. (PDF has 99 pages)
Resumo:
This report presents information on the life history, diet, abundance and distribution, and length-frequency distributions of five invertebrates in Florida Bay, Everglades National Park. Collections were made with an otter trawl in basins on a bi-monthly basis. Non-parametric statistics were used to test spatial and temporal differences in the abundance of invertebrates when numbers were appropriate (i. e., $25). Invertebrate species are presented in four sections. The sections on Life History, and Diet were derived from the literature. The section on Abundance and Distribution consists of data from otter-trawl collections. In addition, comparisons with other studies are included here following our results. The section on Length-frequency Distributions consists of length measurements from all collections, except 1984-1985 when no measurements were taken. Length-frequency distributions were used, when possible, to estimate life stage captured, spawning times, recruitment into Florida Bay for those species which spawn outside the Bay, and growth. Additional material from the literature was added when appropriate. (PDF contains 39 pages)
Resumo:
Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.
Resumo:
INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are viewed as important goals of coastal resource management. Benthic community studies have a history of use in regional estuarine monitoring programs and have been shown to be an effective indicator for describing the extent and magnitude of pollution impacts in estuarine ecosystems, as well as for assessing the effectiveness of management actions. Chesapeake Bay is the largest estuarine system in the United States. Including tidal tributaries, the Bay has approximately 18,694 km of shoreline (more than the entire US West Coast). The watershed is over 165,000 km2 (64,000 miles2), and includes portions of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia) and the District of Columbia. The population of the watershed exceeds 15 million people. There are 150 rivers and streams in the Chesapeake drainage basin. Within the watershed, five major rivers - the Susquehanna, Potomac, Rappahannock, York and James - provide almost 90% of the freshwater to the Bay. The Bay receives an equal volume of water from the Atlantic Ocean. In the upper Bay and tributaries, sediments are fine-grained silts and clays. Sediments in the middle Bay are mostly made of silts and clays derived from shoreline erosion. In the lower Bay, by contrast, the sediments are sandy. These particles come from shore erosion and inputs from the Atlantic Ocean. The introduction of European-style agriculture and large scale clearing of the watershed produced massive shifts in sediment dynamics of the Bay watershed. As early as the mid 1700s, some navigable rivers were filled in by sediment and sedimentation caused several colonial seaports to become landlocked. Toxic contaminants enter the Bay via atmospheric deposition, dissolved and particulate runoff from the watershed or direct discharge. While contaminants enter the Bay from several sources, sediments accumulate many toxic contaminants and thus reveal the status of input for these constituents. In the watershed, loading estimates indicate that the major sources of contaminants are point sources, stormwater runoff, atmospheric deposition, and spills. Point sources and urban runoff in the Bay proper contribute large quantities of contaminants. Pesticide inputs to the Bay have not been quantified. Baltimore Harbor and the Elizabeth River remain among the most contaminated areas in the Unites States. In the mainstem, deep sediment core analyses indicate that sediment accumulation rates are 2-10 times higher in the northern Bay than in the middle and lower Bay, and that sedimentation rates are 2-10 times higher than before European settlement throughout the Bay (NOAA 1998). The core samples show a decline in selected PAH compounds over the past several decades, but absolute concentrations are still 1 to 2 orders of magnitude above 'pristine' conditions. Core data also indicate that concentrations of PAHs, PCBs and, organochlorine pesticides do not demonstrate consistent trends over 25 years, but remain 10 times lower than sediments in the tributaries. In contrast, tri-butyl-tin (TBT) concentrations in the deep cores have declined significantly since it=s use was severely restricted. (PDF contains 241 pages)
Resumo:
The spotted seatrout (Cynoscion nebulosus) is considered a key species relative to the implementation of the Comprehensive Everglades Restoration Plan (CERP). One of the goals of the CERP is to increase freshwater flows to Florida Bay. Increased freshwater flows can have potential positive and negative impacts on spotted seatrout populations. At low salinities, the planktonic eggs of spotted seatrout sink to the bottom and are not viable (Alshuth and Gilmore, 1994; Holt and Holt, 2002). On the other hand, increased freshwater flows can alleviate hypersaline conditions that could result in an expansion of the distribution of the early life stages of spotted seatrout (Thayer et al., 1999; Florida Department of Environmental Protection1). Thus it would be useful to develop a monitoring program that can detect changes in seatrout abundance on time scales short enough to be useful to resource managers. The NOAA Center for Coastal Fisheries and Habitat Research (NOAA) has made sporadic collections of juvenile seatrout using otter trawls since 1984 (see Powell et al, 2004). The results suggest that it might be useful to sample for seatrout in as many as eight different areas or basins (Figure 1): Bradley Key, Sandy Key, Johnson Key, Palm Key, Snake Bight, Central, Whipray and Crocodile Dragover. Unfortunately, logistical constraints are likely to limit the number of tows to about 40 per month over a period of six months each year. Inasmuch as few seatrout are caught in any given tow and the proportion of tows with zero seatrout is often high, it is important to determine how best to allocate this limited sampling effort among the various basins so that any trends in abundance may be detected with sufficient statistical confidence. (PDF contains 16 pages)
Resumo:
Ichthyoplankton was sampled at 14 stations with 60 cm bongo nets fitted with 0.333 mm mesh in basins throughout Florida Bay in 1994-1995. In addition, I compared collections made using an epibenthic sled to those made with standard ichthyoplankton bongo nets at four stations during July 1997-November,1999 to determine ifthe two types of gear are complementary. In 1994-1995, in descending order of abundance, Clupeiformes, Gobiidae, Callionymidae, Sciaenidae, Labrisomidae, Soleidae and Blenniidae dominated the ichthyoplankton. Densities of clupeiforms were generally very high (> 100 larvae 100 m-3) or high (10.0 - 99.9 larvae 100 m-3). Gobiid larvae were ubiquitous with highest densities occurring in waters in close proximity to the Gulf of Mexico (109.7 larvae 100 m-3), lowest in two ofthree eastern Florida Bay stations (<1.0 larva 100 m-3). Spotted seatrout, Cynoscion nebulosus, dominated larval sciaenid collections and the only other sciaenid identified to species was the sand seatrout, Cynoscion arenarius. Taxa differed markedly between collections taken by epibenthic sled and standard ichthyoplankton bongo nets. Taxa collected with standard ichthyoplankton gear were those that spawn in Florida Bay and have pelagic larvae (i.e., engraulids and gobiids). Taxa collected with the sled were small resident species that have benthic larvae (i.e., syngnathids and cyprinodonts) or taxa that spawn outside the bay, but use the bay as a nursery area (i.e., gerreids and haemulids). Recently-settled red drum, Sciaenops ocellatus, were collected with the epibenthic sled in November 1999, although juveniles of this important gamefish are rare in the bay.
Resumo:
Red drum is one ofthe most popular species sought by anglers in Florida Bay, yet juveniles are rarely encountered. We evaluated Florida Bay as a nursery area for red drum by sampling for recently-settled late larvae in basin areas within the bay with an epi-benthic sled at six stations in November 2000, and at seven stations during December 2000 through February 2001. In November 2000 we surveyed potential sampling sites in quiet backwaters adjacent to mangroves for juvenile red drum. A total of 202 sites were sampled mainly in northern Florida Bay and adjacent waters with a cast net. We collected only one recently-settled red drum larvae and no juveniles. Obviously the sites that we sampled in Florida Bay and adjacent waters are not nursery habitat for this valuable species. Sled collections were dominated by bay anchovy, Anchoa mitchilli, but densities were biased by one collection. Five small resident species were among the dominant species: rainwater killifish, Lucania parva; dusky pipefish, Syngnathus floridae; dwarf seahorse, Hippocampus zosterae; and clown goby, Microgobius gulosus. Three species that spawn outside Florida Bay in the GulfofMexico were common: pinfish, Lagodon rhomboides; pigfish, Orthopristis chrysoptera; and silver perch, Bairdiella chrysoura. Twenty-seven species were collected with the cast net. Hardhead silversides (Atherinomorus stipes), bay anchovy, tidewater mojarra (Eucinostomus harengulus), silver jenny (Eucinostomus gula), and goldspotted killifish (Floridichthys carpio) were the most common in cast net collections. Although only one red drum was collected, we were able to: (1) identify mesohaline waters from our cast net sites to test our preliminary assessment that mesohaline habitat might be limited in Florida Bay, (2) document the distribution and abundance of fishes collected by cast net that should enhance our understanding of ichthyofauna in the Northern Subdivision ofFlorida Bay and adjacent waters, and (3) from epibenthic sled collections, describe the habitats, abundance and distribution of recently settled larvae/small juveniles/small resident fishes during late fall and winter. This information should be useful to managers and future research. (PDF contains 34 pages)
Resumo:
In the spring of 2001, NOAA’s National Marine Sanctuary Program (NMSP) and National Centers for Coastal Ocean Science (NCCOS), in consultation with the National Marine Fisheries Service (NMFS), launched a 24-month effort to define and assess biogeographic patterns of selected marine species found within and adjacent to the boundaries of three west coast National Marine Sanctuaries. These sanctuaries, Monterey Bay, Gulf of the Farallones, and Cordell Bank are conducting a joint review process to update sanctuary management plans. The management plans for these sanctuaries have not been updated for over ten years and the status of the natural resources and their management issues in and around the sanctuaries may have changed. In addition, significant accomplishments in research and resource assessments have been made within the region. Thus, it is important to incorporate new and expanding knowledge into the revised management plans for these Sanctuaries.
Resumo:
Fish collections under varying ecological conditions were made by trawling and seining, monthly and quarterly in depths of <1 m to depths of 3 m of the Florida Bay portion of Everglades National Park, Florida. From May 1973 through September 1976, a total of 182,530 fishes representing 128 species and 50 families were taken at 27 stations. An additional 21 species were identified from sportfish-creel surveys and supplemental observations. Most of the species collected were juveniles of species that occur as adults in the Florida Bay creel census survey, or were small species that were seasonal residents. Marked temporal and spatial abundance of the catches was observed. The greatest numbers and biomass of the fishes occurred in the wet season (summer/fall), whereas lowest numbers and biomass appeared during the dry season (winter/spring) The greatest abundance and diversity of fishes was found in western Florida Bay followed by eastern and central Bay regions respectively. Overall, five species comprised 75% of the numerical total while eleven species made up 75% of the total biomass. Collections were dominated numerically by anchovies (Engraulidae), especially Anchoa mitchilli, in western Florida Bay. Mojarras (Gerridae), mostly silver jenny Eucinostomus gula, and porgies (Sparidae), especially pinfish Lagodon rhomboides, dominated numerically in central and eastern portions of the Bay, respectively. Except for salinity, other measured physico-chemical parameters (water temperature, pH, dissolved oxygen, and turbidity) showed no variation beyond ranges considered normal for shallow, tropical marine environments. Salinity varied from 0 to 66 ppt near the mainland. Nearshore hypersaline conditions (>45 ppt) persisted for nearly 2 years during the 1974 - 1975 severe drought period. Significant reductions in fish abundance/diversity were observed in relation to hypersaline conditions. Bay-wide macrobenthic communities were mapped (presence/absence) and were primarily comprised of turtle grass (Thalassia), shoalgrass [(Diplanthera = (Halodule)], and/or green algae Penicillus. Seasonal dieoff of seagrasses was observed in north-central Florida Bay. (PDF contains 107 pages)