900 resultados para Invertebrate Carotenoproteins
Resumo:
Recent research has identified marine molluscs as an excellent source of omega-3 long-chain polyunsaturated fatty acids (lcPUFAs), based on their potential for endogenous synthesis of lcPUFAs. In this study we generated a representative list of fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) genes from major orders of Phylum Mollusca, through the interrogation of transcriptome and genome sequences, and various publicly available databases. We have identified novel and uncharacterised Fad and Elovl sequences in the following species: Anadara trapezia, Nerita albicilla, Nerita melanotragus, Crassostrea gigas, Lottia gigantea, Aplysia californica, Loligo pealeii and Chlamys farreri. Based on alignments of translated protein sequences of Fad and Elovl genes, the haeme binding motif and histidine boxes of Fad proteins, and the histidine box and seventeen important amino acids in Elovl proteins, were highly conserved. Phylogenetic analysis of aligned reference sequences was used to reconstruct the evolutionary relationships for Fad and Elovl genes separately. Multiple, well resolved clades for both the Fad and Elovl sequences were observed, suggesting that repeated rounds of gene duplication best explain the distribution of Fad and Elovl proteins across the major orders of molluscs. For Elovl sequences, one clade contained the functionally characterised Elovl5 proteins, while another clade contained proteins hypothesised to have Elovl4 function. Additional well resolved clades consisted only of uncharacterised Elovl sequences. One clade from the Fad phylogeny contained only uncharacterised proteins, while the other clade contained functionally characterised delta-5 desaturase proteins. The discovery of an uncharacterised Fad clade is particularly interesting as these divergent proteins may have novel functions. Overall, this paper presents a number of novel Fad and Elovl genes suggesting that many mollusc groups possess most of the required enzymes for the synthesis of lcPUFAs.
Resumo:
Reducing unwanted trawl bycatch is actively encouraged in Australia, particularly in prawn trawl fisheries. We tested the performance of a Bycatch Reduction Device, the Yarrow Fisheye, during two periods of commercial fishing operations in Australia's Northern Prawn Fishery, by comparing the catches of paired treatment and control nets. We compared the catch weights of the small fish and invertebrate bycatch, and the commercially important tiger prawns, from 42 trawls in 2002. The Yarrow Fisheye reduced the weight of small bycatch by a mean of 22.7%, with no loss of tiger prawn. We also compared the numbers of seasnakes caught in 41 and 72 trawls during the spring trawling seasons of 2004 and 2005, respectively. The Yarrow Fisheye reduced the catches by a mean of 43.3%. Flume-tank tests of the Yarrow Fisheye showed that this device created a slow water-flow region extending over 2 m downstream from its position in the net, and close to where the catch accumulates. Finfish and seasnakes may be exploiting this slow water-flow region to escape via the eye, Although the reductions in fish and seasnake bycatch were excellent, we think they could be further improved by relating differences in fisheye position and localised water displacements, to design and rigging changes.
Resumo:
Although subsampling is a common method for describing the composition of large and diverse trawl catches, the accuracy of these techniques is often unknown. We determined the sampling errors generated from estimating the percentage of the total number of species recorded in catches, as well as the abundance of each species, at each increase in the proportion of the sorted catch. We completely partitioned twenty prawn trawl catches from tropical northern Australia into subsamples of about 10 kg each. All subsamples were then sorted, and species numbers recorded. Catch weights ranged from 71 to 445 kg, and the number of fish species in trawls ranged from 60 to 138, and invertebrate species from 18 to 63. Almost 70% of the species recorded in catches were "rare" in subsamples (less than one individual per 10 kg subsample or less than one in every 389 individuals). A matrix was used to show the increase in the total number of species that were recorded in each catch as the percentage of the sorted catch increased. Simulation modelling showed that sorting small subsamples (about 10% of catch weights) identified about 50% of the total number of species caught in a trawl. Larger subsamples (50% of catch weight on average) identified about 80% of the total species caught in a trawl. The accuracy of estimating the abundance of each species also increased with increasing subsample size. For the "rare" species, sampling error was around 80% after sorting 10% of catch weight and was just less than 50% after 40% of catch weight had been sorted. For the "abundant" species (five or more individuals per 10 kg subsample or five or more in every 389 individuals), sampling error was around 25% after sorting 10% of catch weight, but was reduced to around 10% after 40% of catch weight had been sorted.
Resumo:
Subsampling is a common method for estimating the abundance of species in trawl catches. However, the accuracy of subsampling in representing the total catch has not been assessed. To estimate one possible source of bias due to subsampling, we tested whether the position on trawler sorting trays from which subsamples were taken affected their ability to represent species in catches. This was done by sorting catches into 10 kg subsamples and comparing subsamples taken from different positions on the sorting tray. Comparisons were made after species were grouped into three categories of abundance, either 'rare', 'common' or 'abundant'. A generalised linear model analysis showed that taking subsamples from different positions on the sorting tray had no major effect on estimating the total numbers or weights of fish or invertebrates, or the total number of fish or invertebrate taxa, recorded in each position. Some individual taxa showed differences between positions on the sorting tray (11.5% of taxa ina three-position design; 25% in a five-position design). But consistent and meaningful patterns in the position of these taxa on the sorting tray could only be seen for the pony fish Leiognathus moretoniensis and the saucer scallop Amusium pleuronectes. Because most bycatch laxa are well mixed throughout the catch, subsamples can be taken from any position on trawler sorting trays without introducing bias.
Resumo:
Twenty new Australian species of the scarabaeine genus Onthophagus Latreille are described: O. arkoola, O. beelarong, O. bindaree, O. binyana, O. bundara, O. cooloola, O. dinjerra, O. godarra, O. gurburra, O. kakadu, O. mije, O. mongana, O. pinaroo, O. trawalla, O. weringerong, O. williamsi, O. worooa, O. yackatoon, O. yaran, O. yourula. Notes and scanning electron micrographs are given to assist in the separation of each from previously described Australian species. Distribution maps are provided for each species
Resumo:
In newly invaded communities, interspecific competition is thought to play an important role in determining the success of the invader and its impact on the native community. In southern Australia, the native Polistes humilis was the predominant social wasp prior to the arrival of the exotic Vespula germanica (Hymenoptera: Vespidae). Both species forage for similar resources (water, pulp, carbohydrate and protein prey), and concerns have arisen about potential competition between them. The aim of this study was to identify the protein foods that these wasps feed on. As many prey items are masticated by these wasps to the degree that they cannot be identified using conventional means, morphological identification was complemented by sequencing fragments of the mitochondrial 16S rRNA gene. GenBank searches using blast and phylogenetic analyses were used to identify prey items to at least order level. The results were used to construct complete prey inventories for the two species. These indicate that while P. humilis is restricted to feeding on lepidopteran larvae, V. germanica collects a variety of prey of invertebrate and vertebrate origin. Calculated values of prey overlap between the two species are used to discuss the implications of V. germanica impacting on P. humilis. Results obtained are compared to those gained by solely 'conventional' methods, and the advantages of using DNA-based taxonomy in ecological studies are emphasized.
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
This study compares estimates of the census size of the spawning population with genetic estimates of effective current and long-term population size for an abundant and commercially important marine invertebrate, the brown tiger prawn (Penaeus esculentus). Our aim was to focus on the relationship between genetic effective and census size that may provide a source of information for viability analyses of naturally occurring populations. Samples were taken in 2001, 2002 and 2003 from a population on the east coast of Australia and temporal allelic variation was measured at eight polymorphic microsatellite loci. Moments-based and maximum-likelihood estimates of current genetic effective population size ranged from 797 to 1304. The mean long-term genetic effective population size was 9968. Although small for a large population, the effective population size estimates were above the threshold where genetic diversity is lost at neutral alleles through drift or inbreeding. Simulation studies correctly predicted that under these experimental conditions the genetic estimates would have non-infinite upper confidence limits and revealed they might be overestimates of the true size. We also show that estimates of mortality and variance in family size may be derived from data on average fecundity, current genetic effective and census spawning population size, assuming effective population size is equivalent to the number of breeders. This work confirms that it is feasible to obtain accurate estimates of current genetic effective population size for abundant Type III species using existing genetic marker technology.
Resumo:
Males of some species included in the Bactrocera dorsalis complex are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl) benzene), a natural compound occurring in a variety of plant species. ME feeding of males of the B. dorsalis complex is known to enhance their mating competitiveness. Within B. dorsalis, recent studies show that Asian and African populations of B. dorsalis are sexually compatible, while populations of B. dorsalis and Bactrocera carambolae are relatively incompatible. The objectives of this study were to examine whether ME feeding by males affects mating compatibility between Asian and African populations of B. dorsalis and ME feeding reduces male mating incompatibility between B. dorsalis (Asian population) and B. carambolae. The data confirmed that Asian and African populations of B. dorsalis are sexually compatible for mating and showed that ME feeding only increased the number of matings. Though ME feeding also increased the number of matings of B. dorsalis (Asian population) and B. carambolae males but the sexual incompatibility between both species was not reduced by treatment with ME. These results conform to the efforts resolving the biological species limits among B. dorsalis complex and have implications for fruit fly control programs in fields and horticultural trade.
Resumo:
Laboratory-reared insects are widely known to have significantly reduced genetic diversity in comparison to wild populations; however, subtle behavioural changes between laboratory-adapted and wild or ‘wildish’ (i.e., within one or very few generations of field collected material) populations are less well understood. Quantifying alterations in behaviour, particularly sexual, in laboratory-adapted insects is important for mass-reared insects for use in pest management strategies, especially those that have a sterile insect technique component. We report subtle changes in sexual behaviour between ‘wildish’ Bactrocera dorsalis flies (F1 and F2) from central and southern Thailand and the same colonies 12 months later when at six generations from wild. Mating compatibility tests were undertaken under standardised semi-natural conditions, with number of homo/heterotypic couples and mating location in field cages analysed via compatibility indices. Central and southern populations of B. dorsalis displayed positive assortative mating in the 2010 trials but mated randomly in the 2011 trials. ‘Wildish’ southern Thailand males mated significantly earlier than central Thailand males in 2010; this difference was considerably reduced in 2011, yet homotypic couples from southern Thailand still formed significantly earlier than all other couple combinations. There was no significant difference in couple location in 2010; however, couple location significantly differed among pair types in 2011 with those involving southern Thailand females occurring significantly more often on the tree relative to those with central Thailand females. Relative participation also changed with time, with more southern Thailand females forming couples relative to central Thailand females in 2010; this difference was considerably decreased by 2011. These results reveal how subtle changes in sexual behaviour, as driven by laboratory rearing conditions, may significantly influence mating behaviour between laboratory-adapted and recently colonised tephritid fruit flies over a relatively short period of time.
Resumo:
Movement of tephritid flies underpins their survival, reproduction, and ability to establish in new areas and is thus of importance when designing effective management strategies. Much of the knowledge currently available on tephritid movement throughout landscapes comes from the use of direct or indirect methods that rely on the trapping of individuals. Here, we review published experimental designs and methods from mark-release-recapture (MRR) studies, as well as other methods, that have been used to estimate movement of the four major tephritid pest genera (Bactrocera, Ceratitis, Anastrepha, and Rhagoletis). In doing so, we aim to illustrate the theoretical and practical considerations needed to study tephritid movement. MRR studies make use of traps to directly estimate the distance that tephritid species can move within a generation and to evaluate the ecological and physiological factors that influence dispersal patterns. MRR studies, however, require careful planning to ensure that the results obtained are not biased by the methods employed, including marking methods, trap properties, trap spacing, and spatial extent of the trapping array. Despite these obstacles, MRR remains a powerful tool for determining tephritid movement, with data particularly required for understudied species that affect developing countries. To ensure that future MRR studies are successful, we suggest that site selection be carefully considered and sufficient resources be allocated to achieve optimal spacing and placement of traps in line with the stated aims of each study. An alternative to MRR is to make use of indirect methods for determining movement, or more correctly, gene flow, which have become widely available with the development of molecular tools. Key to these methods is the trapping and sequencing of a suitable number of individuals to represent the genetic diversity of the sampled population and investigate population structuring using nuclear genomic markers or non-recombinant mitochondrial DNA markers. Microsatellites are currently the preferred marker for detecting recent population displacement and provide genetic information that may be used in assignment tests for the direct determination of contemporary movement. Neither MRR nor molecular methods, however, are able to monitor fine-scale movements of individual flies. Recent developments in the miniaturization of electronics offer the tantalising possibility to track individual movements of insects using harmonic radar. Computer vision and radio frequency identification tags may also permit the tracking of fine-scale movements by tephritid flies by automated resampling, although these methods come with the same problems as traditional traps used in MRR studies. Although all methods described in this chapter have limitations, a better understanding of tephritid movement far outweighs the drawbacks of the individual methods because of the need for this information to manage tephritid populations.
Resumo:
The effectiveness of any trapping system is highly dependent on the ability to accurately identify the specimens collected. For many fruit fly species, accurate identification (= diagnostics) using morphological or molecular techniques is relatively straightforward and poses few technical challenges. However, nearly all genera of pest tephritids also contain groups of species where single, stand-alone tools are not sufficient for accurate identification: such groups include the Bactrocera dorsalis complex, the Anastrepha fraterculus complex and the Ceratitis FAR complex. Misidentification of high-impact species from such groups can have dramatic consequences and negate the benefits of an otherwise effective trapping program. To help prevent such problems, this chapter defines what is meant by a species complex and describes in detail how the correct identification of species within a complex requires the use of an integrative taxonomic approach. Integrative taxonomy uses multiple, independent lines of evidence to delimit species boundaries, and the underpinnings of this approach from both the theoretical speciation literature and the systematics/taxonomy literature are described. The strength of the integrative approach lies in the explicit testing of hypotheses and the use of multiple, independent species delimitation tools. A case is made for a core set of species delimitation tools (pre- and post-zygotic compatibility tests, multi-locus phylogenetic analysis, chemoecological studies, and morphometric and geometric morphometric analyses) to be adopted as standards by tephritologists aiming to resolve economically important species complexes. In discussing the integrative approach, emphasis is placed on the subtle but important differences between integrative and iterative taxonomy. The chapter finishes with a case study that illustrates how iterative taxonomy applied to the B. dorsalis species complex led to incorrect taxonomic conclusions, which has had major implications for quarantine, trade, and horticultural pest management. In contrast, an integrative approach to the problem has resolved species limits in this taxonomically difficult group, meaning that robust diagnostics are now available.
Resumo:
Thirty-one isolates of Metarhizium anisopliae were bioassayed against the cattle tick (Boophilus microplus). More than half of the isolates showed a high degree of virulence to ticks. Radial growth curves for growth between 20 °C and 40 °C were obtained for all isolates. This information together with information on virulence will be important for the selection of isolates suitable to kill ticks on the surface of cattle. A biopesticide for cattle ticks must kill ticks rapidly at temperatures within the upper end of most isolates' growth curves. It was also found that the time taken to achieve 100% tick mortality in vitro using a virulent isolate could be halved by applying conidia in a 10% oil emulsion. Scanning electron microscopy and light microscopy were used to investigate and compare the germination and penetration of conidia formulated in aqueous and oil formulations. It was found that conidia in both formulations were able to germinate and produce appressoria on the surface of ticks in less than 11 h. Marked weakness within 26 h, followed by extensive hyphal growth on the cuticle characterised the invasion of ticks by M. anisopliae.
Resumo:
The effects of the hydrological regime on temporal changes to physical characteristics of substratum habitat, sediment texture of surface sediments (<10 cm), were investigated in a sub-tropical headwater stream over four years. Surface discharge was measured together with vertical hydraulic gradient and groundwater depth in order to explore features of sediment habitat that extend beyond the streambed surface. Whilst the typical discharge pattern was one of intermittent base flows and infrequent flow events associated with monsoonal rain patterns, the study period also encompassed a drought and a one-in-a-hundred-year flood. Rainfall and discharge did not necessarily reflect the actual conditions in the stream. Although surface waters were persistent long after discharge ceased, the streambed was completely dry on several occasions. Shallow groundwater was present at variable depths throughout the study period, being absent only at the height of the drought. The streambed sediments were mainly gravels, sand and clay. Finer sediment fractions showed a marked change in grain size over time, although bedload movement was limited to a single high discharge event. In response to a low discharge regimen (drought), sediments characteristically showed non-normal distributions and were dominated by finer materials. A high-energy discharge event produced a coarsening of sands and a diminished clay fraction in the streambed. Particulate organic matter from sediments showed trends of build-up and decline with the high and low discharge regimes, respectively. Within the surface sediment intersticies three potential categories of invertebrate habitat were recognised, each with dynamic spatial and temporal boundaries.
Resumo:
Thaumastocoris peregrinus is a recently introduced invertebrate pest of non-native Eucalyptus plantations in the Southern Hemisphere. It was first reported from South Africa in 2003 and in Argentina in 2005. Since then, populations have grown explosively and it has attained an almost ubiquitous distribution over several regions in South Africa on 26 Eucalyptus species. Here we address three key questions regarding this invasion, namely whether only one species has been introduced, whether there were single or multiple introductions into South Africa and South America and what the source of the introduction might have been. To answer these questions, bar-coding using mitochondrial DNA (COI) sequence diversity was used to characterise the populations of this insect from Australia, Argentina, Brazil, South Africa and Uruguay. Analyses revealed three cryptic species in Australia, of which only T. peregrinus is represented in South Africa and South America. Thaumastocoris peregrinus populations contained eight haplotypes, with a pairwise nucleotide distance of 0.2-0.9% from seventeen locations in Australia. Three of these haplotypes are shared with populations in South America and South Africa, but the latter regions do not share haplotypes. These data, together with the current distribution of the haplotypes and the known direction of original spread in these regions, suggest that at least three distinct introductions of the insect occurred in South Africa and South America before 2005. The two most common haplotypes in Sydney, one of which was also found in Brisbane, are shared with the non-native regions. Sydney populations of T. peregrinus, which have regularly reached outbreak levels in recent years, might thus have served as source of these three distinct introductions into other regions of the Southern Hemisphere.