807 resultados para Internet of things, Mqtt, domotica, Raspberry Pi
Resumo:
Postprint
Resumo:
Major food adulteration and contamination events occur with alarming regularity and are known to be episodic, with the question being not if but when another large-scale food safety/integrity incident will occur. Indeed, the challenges of maintaining food security are now internationally recognised. The ever increasing scale and complexity of food supply networks can lead to them becoming significantly more vulnerable to fraud and contamination, and potentially dysfunctional. This can make the task of deciding which analytical methods are more suitable to collect and analyse (bio)chemical data within complex food supply chains, at targeted points of vulnerability, that much more challenging. It is evident that those working within and associated with the food industry are seeking rapid, user-friendly methods to detect food fraud and contamination, and rapid/high-throughput screening methods for the analysis of food in general. In addition to being robust and reproducible, these methods should be portable and ideally handheld and/or remote sensor devices, that can be taken to or be positioned on/at-line at points of vulnerability along complex food supply networks and require a minimum amount of background training to acquire information rich data rapidly (ergo point-and-shoot). Here we briefly discuss a range of spectrometry and spectroscopy based approaches, many of which are commercially available, as well as other methods currently under development. We discuss a future perspective of how this range of detection methods in the growing sensor portfolio, along with developments in computational and information sciences such as predictive computing and the Internet of Things, will together form systems- and technology-based approaches that significantly reduce the areas of vulnerability to food crime within food supply chains. As food fraud is a problem of systems and therefore requires systems level solutions and thinking.
Resumo:
After years of deliberation, the EU commission sped up the reform process of a common EU digital policy considerably in 2015 by launching the EU digital single market strategy. In particular, two core initiatives of the strategy were agreed upon: General Data Protection Regulation and the Network and Information Security (NIS) Directive law texts. A new initiative was additionally launched addressing the role of online platforms. This paper focuses on the platform privacy rationale behind the data protection legislation, primarily based on the proposal for a new EU wide General Data Protection Regulation. We analyse the legislation rationale from an Information System perspective to understand the role user data plays in creating platforms that we identify as “processing silos”. Generative digital infrastructure theories are used to explain the innovative mechanisms that are thought to govern the notion of digitalization and successful business models that are affected by digitalization. We foresee continued judicial data protection challenges with the now proposed Regulation as the adoption of the “Internet of Things” continues. The findings of this paper illustrate that many of the existing issues can be addressed through legislation from a platform perspective. We conclude by proposing three modifications to the governing rationale, which would not only improve platform privacy for the data subject, but also entrepreneurial efforts in developing intelligent service platforms. The first modification is aimed at improving service differentiation on platforms by lessening the ability of incumbent global actors to lock-in the user base to their service/platform. The second modification posits limiting the current unwanted tracking ability of syndicates, by separation of authentication and data store services from any processing entity. Thirdly, we propose a change in terms of how security and data protection policies are reviewed, suggesting a third party auditing procedure.
Resumo:
With the development of the Internet-of-Things, more and more IoT platforms come up with different structures and characteristics. Making balance of their advantages and disadvantages, we should choose the suitable platform in differ- ent scenarios. For this project, I make comparison of a cloud-based centralized platform, Microsoft Azure IoT hub and a fully distributed platform, Sensi- bleThings. Quantitative comparison is made for performance by 2 scenarios, messages sending speed adds up, devices lie in different location. General com- parison is made for security, utilization and the storage. Finally I draw the con- clusion that SensibleThings performs more stable when a lot of messages push- es to the platform. Microsoft Azure has better geographic expansion. For gener- al comparison, Microsoft Azure IoT hub has better security. The requirement of local device for Microsoft Azure IoT hub is lower than SensibleThings. The SensibleThings are open source and free while Microsoft Azure follow the con- cept “pay as you go” with many throttling limitations for different editions. Microsoft is more user-friendly.
Resumo:
This project is aimed at making comparison between current existing Internet- of-Things (IoT) platforms, SensibleThings (ST) and Global Sensors Networks (GSN). Project can be served as a further work of platforms’ investigation. Comparing and learning from each other aim to contribute to the improvement of future platforms development. Detailed comparison is mainly with the respect of platform feature, communication and data present-frequency performance under stress, and platform node scalability performance on one limited device. Study is conducted through developing applications on each platform, and making measuring performance under the same condition in household network environment. So far, all these respects have had results and been concluded. Qualitatively comparing, GSN performs better in the facets of node’s swift development and deployment, data management, node subscription and connection retry mechanism. Whereas, ST is superior in respects of network package encryption, platform reliability, session initializing latency, and degree of developing freedom. In quantitative comparison, nodes on GSN has better data push pressure resistence while ST nodes works with lower session latency. In terms of data present-frequency, ST node can reach higher updating frequency than GSN node. In the aspect of node sclability on one limited device, ST nodes take the advantage in averagely lower latency than GSN node when nodes number is less than 15 on limited device. But due to sharing mechanism of GSN, on one limited device, it's nodes shows more scalable if platform nodes have similar job.
Resumo:
The objective of this paper is to perform a quantitative comparison of Dweet.io and SensibleThings from different aspects. With the fast development of internet of things, the platforms for internet-of-things face bigger challenges. This paper will evaluate both systems in four parts. The first part shows the general comparison of input ways and output functions provided by the platforms. The second part shows the security comparison, which focuses on the protocol types of the packets and the stability during the communication. The third part shows the scalability comparison when the value becomes bigger. The fourth part shows the scalability comparison when speeding up the processes. After the comparisons, I concluded that Dweet.io is more easy to use on devices and supports more programming languages. Dweet.io realizes visualization and it can be shared. Dweet.io is safer and more stable than SensibleThings. SensibleThings provides more openness. SensibleThings has better scalability in handling big values and quick speed.
Resumo:
Abstract—With the proliferation of Software systems and the rise of paradigms such the Internet of Things, Cyber- Physical Systems and Smart Cities to name a few, the energy consumed by software applications is emerging as a major concern. Hence, it has become vital that software engineers have a better understanding of the energy consumed by the code they write. At software level, work so far has focused on measuring the energy consumption at function and application level. In this paper, we propose a novel approach to measure energy consumption at a feature level, cross-cutting multiple functions, classes and systems. We argue the importance of such measurement and the new insight it provides to non-traditional stakeholders such as service providers. We then demonstrate, using an experiment, how the measurement can be done with a combination of tools, namely our program slicing tool (PORBS) and energy measurement tool (Jolinar).
Resumo:
The Internet of things (IoT) is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However, as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.
Resumo:
The continuous flow of technological developments in communications and electronic industries has led to the growing expansion of the Internet of Things (IoT). By leveraging the capabilities of smart networked devices and integrating them into existing industrial, leisure and communication applications, the IoT is expected to positively impact both economy and society, reducing the gap between the physical and digital worlds. Therefore, several efforts have been dedicated to the development of networking solutions addressing the diversity of challenges associated with such a vision. In this context, the integration of Information Centric Networking (ICN) concepts into the core of IoT is a research area gaining momentum and involving both research and industry actors. The massive amount of heterogeneous devices, as well as the data they produce, is a significant challenge for a wide-scale adoption of the IoT. In this paper we propose a service discovery mechanism, based on Named Data Networking (NDN), that leverages the use of a semantic matching mechanism for achieving a flexible discovery process. The development of appropriate service discovery mechanisms enriched with semantic capabilities for understanding and processing context information is a key feature for turning raw data into useful knowledge and ensuring the interoperability among different devices and applications. We assessed the performance of our solution through the implementation and deployment of a proof-of-concept prototype. Obtained results illustrate the potential of integrating semantic and ICN mechanisms to enable a flexible service discovery in IoT scenarios.
Resumo:
A smart solar photovoltaic grid system is an advent of innovation coherence of information and communications technology (ICT) with power systems control engineering via the internet [1]. This thesis designs and demonstrates a smart solar photovoltaic grid system that is selfhealing, environmental and consumer friendly, but also with the ability to accommodate other renewable sources of energy generation seamlessly, creating a healthy competitive energy industry and optimising energy assets efficiency. This thesis also presents the modelling of an efficient dynamic smart solar photovoltaic power grid system by exploring the maximum power point tracking efficiency, optimisation of the smart solar photovoltaic array through modelling and simulation to improve the quality of design for the solar photovoltaic module. In contrast, over the past decade quite promising results have been published in literature, most of which have not addressed the basis of the research questions in this thesis. The Levenberg-Marquardt and sparse based algorithms have proven to be very effective tools in helping to improve the quality of design for solar photovoltaic modules, minimising the possible relative errors in this thesis. Guided by theoretical and analytical reviews in literature, this research has carefully chosen the MatLab/Simulink software toolbox for modelling and simulation experiments performed on the static smart solar grid system. The auto-correlation coefficient results obtained from the modelling experiments give an accuracy of 99% with negligible mean square error (MSE), root mean square error (RMSE) and standard deviation. This thesis further explores the design and implementation of a robust real-time online solar photovoltaic monitoring system, establishing a comparative study of two solar photovoltaic tracking systems which provide remote access to the harvested energy data. This research made a landmark innovation in designing and implementing a unique approach for online remote access solar photovoltaic monitoring systems providing updated information of the energy produced by the solar photovoltaic module at the site location. In addressing the challenge of online solar photovoltaic monitoring systems, Darfon online data logger device has been systematically integrated into the design for a comparative study of the two solar photovoltaic tracking systems examined in this thesis. The site location for the comparative study of the solar photovoltaic tracking systems is at the National Kaohsiung University of Applied Sciences, Taiwan, R.O.C. The overall comparative energy output efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic monitoring system as observed at the research location site is about 72% based on the total energy produced, estimated money saved and the amount of CO2 reduction achieved. Similarly, in comparing the total amount of energy produced by the two solar photovoltaic tracking systems, the overall daily generated energy for the month of July shows the effectiveness of the azimuthal-altitude tracking systems over the 450 stationary solar photovoltaic system. It was found that the azimuthal-altitude dual-axis tracking systems were about 68.43% efficient compared to the 450 stationary solar photovoltaic systems. Lastly, the overall comparative hourly energy efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic energy system was found to be 74.2% efficient. Results from this research are quite promising and significant in satisfying the purpose of the research objectives and questions posed in the thesis. The new algorithms introduced in this research and the statistical measures applied to the modelling and simulation of a smart static solar photovoltaic grid system performance outperformed other previous works in reviewed literature. Based on this new implementation design of the online data logging systems for solar photovoltaic monitoring, it is possible for the first time to have online on-site information of the energy produced remotely, fault identification and rectification, maintenance and recovery time deployed as fast as possible. The results presented in this research as Internet of things (IoT) on smart solar grid systems are likely to offer real-life experiences especially both to the existing body of knowledge and the future solar photovoltaic energy industry irrespective of the study site location for the comparative solar photovoltaic tracking systems. While the thesis has contributed to the smart solar photovoltaic grid system, it has also highlighted areas of further research and the need to investigate more on improving the choice and quality design for solar photovoltaic modules. Finally, it has also made recommendations for further research in the minimization of the absolute or relative errors in the quality and design of the smart static solar photovoltaic module.
Resumo:
The increasing dependency of everyday life on mobile devices also increases the number and complexity of computing tasks to be supported by these devices. However, the inherent requirement of mobility restricts them from being resources rich both in terms of energy (battery capacity) and other computing resources such as processing capacity, memory and other resources. This thesis looks into cyber foraging technique of offloading computing tasks. Various experiments on android mobile devices are carried out to evaluate offloading benefits in terms of sustainability advantage, prolonging battery life and augmenting the performance of mobile devices. This thesis considers two scenarios of cyber foraging namely opportunistic offloading and competitive offloading. These results show that the offloading scenarios are important for both green computing and resource augmentation of mobile devices. A significant advantage in battery life gain and performance enhancement is obtained. Moreover, cyber foraging is proved to be efficient in minimizing energy consumption per computing tasks. The work is based on scavenger cyber foraging system. In addition, the work can be used as a basis for studying cyber foraging and other similar approaches such as mobile cloud/edge computing for internet of things devices and improving the user experiences of applications by minimizing latencies through the use of potential nearby surrogates.
Resumo:
As the interest in the Web of Things increases, specially for the general population, the barriers to entry for the use of these technologies should decrease. Current applications can be developed to adapt their behaviour to predefined conditions and users preferences, facilitating their use. In the future,Web of Things software should be able to automatically adjust its behaviour to non-predefined preferences or context of its users. In this vision paper we define the Situational-Context as the combination of the virtual profiles of the entities (things or people) that concur at a particular place and time. The computation of the Situational-Context allow us to predict the expected system behaviour and the required interaction between devices to meet the entities’ goals, achieving a better adjustment of the system to variable contexts.
Resumo:
La tesi si concentra sullo studio dell'architettura di un sistema operativo real-time e tratta approfonditamente il dispositivo embedded Raspberry Pi. Successivamente,si procede con l'installazione di BitThunder(un RTOS basato su FreeRTOS) su tale sistema embedded e si attua un test pratico per verificarne il funzionamento.