974 resultados para Inter-operator variability
Resumo:
Temperature and precipitation are major forcing factors influencing grapevine phenology and yield, as well as wine quality. Bioclimatic indices describing the suitability of a particular region for wine production are a commonly used tool for viticultural zoning. For this research these indices were computed for Europe by using the E-OBS gridded daily temperature and precipitation data set for the period from 1950 to 2009. Results showed strong regional contrasts based on the different index patterns and reproduced the wide diversity of local conditions that largely explain the quality and diversity of grapevines being grown across Europe. Owing to the strong inter-annual variability in the indices, a trend analysis and a principal component analysis were applied together with an assessment of their mean patterns. Significant trends were identified in the Winkler and Huglin indices, particularly for southwestern Europe. Four statistically significant orthogonal modes of variability were isolated for the Huglin index (HI), jointly representing 82% of the total variance in Europe. The leading mode was largely dominant (48% of variance) and mainly reflected the observed historical long-term changes. The other 3 modes corresponded to regional dipoles within Europe. Despite the relevance of local and regional climatic characteristics to grapevines, it was demonstrated via canonical correlation analysis that the observed inter-annual variability of the HI was strongly controlled by the large-scale atmospheric circulation during the growing season (April to September).
Resumo:
BACKGROUND: Evidence suggests the wide variation in platelet response within the population is genetically controlled. Unraveling the complex relationship between sequence variation and platelet phenotype requires accurate and reproducible measurement of platelet response. OBJECTIVE: To develop a methodology suitable for measuring signaling pathway-specific platelet phenotype, to use this to measure platelet response in a large cohort, and to demonstrate the effect size of sequence variation in a relevant model gene. METHODS: Three established platelet assays were evaluated: mobilization of [Ca(2+)](i), aggregometry and flow cytometry, each in response to adenosine 5'-diphosphate (ADP) or the glycoprotein (GP) VI-specific crosslinked collagen-related peptide (CRP). Flow cytometric measurement of fibrinogen binding and P-selectin expression in response to a single, intermediate dose of each agonist gave the best combination of reproducibility and inter-individual variability and was used to measure the platelet response in 506 healthy volunteers. Pathway specificity was ensured by blocking the main subsidiary signaling pathways. RESULTS: Individuals were identified who were hypo- or hyper-responders for both pathways, or who had differential responses to the two agonists, or between outcomes. 89 individuals, retested three months later using the same methodology, showed high concordance between the two visits in all four assays (r(2) = 0.872, 0.868, 0.766 and 0.549); all subjects retaining their phenotype at recall. The effect of sequence variation at the GP6 locus accounted for approximately 35% of the variation in the CRP-XL response. CONCLUSION: Genotyping-phenotype association studies in a well-characterized, large cohort provides a powerful strategy to measure the effect of sequence variation in genes regulating the platelet response.
Resumo:
Projected changes in the extra-tropical wintertime storm tracks are investigated using the multi-model ensembles from both the third and fifth phases of the World Climate Research Programme's Coupled Model Intercomparison Project (CMIP3 and CMIP5). The aim is to characterize the magnitude of the storm track responses relative to their present-day year-to-year variability. For the experiments considered, the ‘middle-of-the-road’ scenarios in each CMIP, there are regions of the Northern Hemisphere where the responses of up to 40% of the models exceed half of the inter-annual variability, and for the Southern Hemisphere there are regions where up to 60% of the model responses exceed half of the inter-annual variability.
Resumo:
We have incorporated a semi-mechanistic isoprene emission module into the JULES land-surface scheme, as a first step towards a modelling tool that can be applied for studies of vegetation – atmospheric chemistry interactions, including chemistry-climate feedbacks. Here, we evaluate the coupled model against local above-canopy isoprene emission flux measurements from six flux tower sites as well as satellite-derived estimates of isoprene emission over tropical South America and east and south Asia. The model simulates diurnal variability well: correlation coefficients are significant (at the 95 % level) for all flux tower sites. The model reproduces day-to-day variability with significant correlations (at the 95 % confidence level) at four of the six flux tower sites. At the UMBS site, a complete set of seasonal observations is available for two years (2000 and 2002). The model reproduces the seasonal pattern of emission during 2002, but does less well in the year 2000. The model overestimates observed emissions at all sites, which is partially because it does not include isoprene loss through the canopy. Comparison with the satellite-derived isoprene-emission estimates suggests that the model simulates the main spatial patterns, seasonal and inter-annual variability over tropical regions. The model yields a global annual isoprene emission of 535 ± 9 TgC yr−1 during the 1990s, 78 % of which from forested areas.
Resumo:
Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.
Resumo:
Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover; composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). In general, the SDBM performs better than either of the DGVMs. It reproduces independent measurements of net primary production (NPP) but underestimates the amplitude of the observed CO2 seasonal cycle. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks.
Resumo:
Purpose of review There is growing interest in applying metabolic profiling technologies to food science as this approach is now embedded into the foodomics toolbox. This review aims at exploring how metabolic profiling can be applied to the development of functional foods. Recent findings One of the biggest challenges of modern nutrition is to propose a healthy diet to populations worldwide that must suit high inter-individual variability driven by complex gene-nutrient-environment interactions. Although a number of functional foods are now proposed in support of a healthy diet, a one-size-fits-all approach to nutrition is inappropriate and new personalised functional foods are necessary. Metabolic profiling technologies can assist at various levels of the development of functional foods, from screening for food composition to identification of new biomarkers of food intake to support diet intervention and epidemiological studies. Summary Modern ‘omics’ technologies, including metabolic profiling, will support the development of new personalised functional foods of high relevance to twenty-first-century medical challenges such as controlling the worldwide spread of metabolic disorders and ensuring healthy ageing.
Resumo:
Wind energy potential in Iberia is assessed for recent–past (1961–2000) and future (2041–2070) climates. For recent–past, a COSMO-CLM simulation driven by ERA-40 is used. COSMO-CLM simulations driven by ECHAM5 following the A1B scenario are used for future projections. A 2 MW rated power wind turbine is selected. Mean potentials, inter-annual variability and irregularity are discussed on annual/seasonal scales and on a grid resolution of 20 km. For detailed regional assessments eight target sites are considered. For recent–past conditions, the highest daily mean potentials are found in winter over northern and eastern Iberia, particularly on high-elevation or coastal regions. In northwestern Iberia, daily potentials frequently reach maximum wind energy output (50 MWh day−1), particularly in winter. Southern Andalucía reveals high potentials throughout the year, whereas the Ebro valley and central-western coast show high potentials in summer. The irregularity in annual potentials is moderate (<15% of mean output), but exacerbated in winter (40%). Climate change projections show significant decreases over most of Iberia (<2 MWh day−1). The strong enhancement of autumn potentials in Southern Andalucía is noteworthy (>2 MWh day−1). The northward displacement of North Atlantic westerly winds (autumn–spring) and the strengthening of easterly flows (summer) are key drivers of future projections.
Resumo:
With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind power generation events such as prolonged periods of low (or high) generation and ramps in generation, are a growing concern for the efficient and secure operation of national power systems. As extreme events occur infrequently, long and reliable meteorological records are required to accurately estimate their characteristics. Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets for power system applications, many of which focus on long-term average statistics such as monthly-mean generation. Here we demonstrate that reanalysis data can also be used to estimate the frequency of relatively short-lived extreme events (including ramping on sub-daily time scales). Verification against 328 surface observation stations across the United Kingdom suggests that near-surface wind variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced using reanalysis, with no need for costly dynamical downscaling. A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in Great Britain (GB), assuming a fixed, modern distribution of wind farms. The resultant generation estimates are highly correlated with recorded data from National Grid in the recent period, both for instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year time series is then used to quantify the frequency with which different extreme GB-wide wind power generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into the nature of extreme wind power generation events are described, including (i) that the number of prolonged low or high generation events is well approximated by a Poission-like random process, and (ii) whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar in both summer and winter. An up-to-date version of the GB case study data as well as the underlying model are freely available for download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/.
Resumo:
Anthropogenic aerosols in the atmosphere have the potential to affect regional-scale land hydrology through solar dimming. Increased aerosol loading may have reduced historical surface evaporation over some locations, but the magnitude and extent of this effect is uncertain. Any reduction in evaporation due to historical solar dimming may have resulted in an increase in river flow. Here we formally detect and quantify the historical effect of changing aerosol concentrations, via solar radiation, on observed river flow over the heavily industrialized, northern extra-tropics. We use a state-of-the-art estimate of twentieth century surface meteorology as input data for a detailed land surface model, and show that the simulations capture the observed strong inter-annual variability in runoff in response to climatic fluctuations. Using statistical techniques, we identify a detectable aerosol signal in the observed river flow both over the combined region, and over individual river basins in Europe and North America. We estimate that solar dimming due to rising aerosol concentrations in the atmosphere around 1980 led to an increase in river runoff by up to 25% in the most heavily polluted regions in Europe. We propose that, conversely, these regions may experience reduced freshwater availability in the future, as air quality improvements are set to lower aerosol loading and solar dimming.
Resumo:
Well-resolved air–sea interactions are simulated in a new ocean mixed-layer, coupled configuration of the Met Office Unified Model (MetUM-GOML), comprising the MetUM coupled to the Multi-Column K Profile Parameterization ocean (MC-KPP). This is the first globally coupled system which provides a vertically resolved, high near-surface resolution ocean at comparable computational cost to running in atmosphere-only mode. As well as being computationally inexpensive, this modelling framework is adaptable– the independent MC-KPP columns can be applied selectively in space and time – and controllable – by using temperature and salinity corrections the model can be constrained to any ocean state. The framework provides a powerful research tool for process-based studies of the impact of air–sea interactions in the global climate system. MetUM simulations have been performed which separate the impact of introducing inter- annual variability in sea surface temperatures (SSTs) from the impact of having atmosphere–ocean feedbacks. The representation of key aspects of tropical and extratropical variability are used to assess the performance of these simulations. Coupling the MetUM to MC-KPP is shown, for example, to reduce tropical precipitation biases, improve the propagation of, and spectral power associated with, the Madden–Julian Oscillation and produce closer-to-observed patterns of springtime blocking activity over the Euro-Atlantic region.
Resumo:
BACKGROUND: Apolipoprotein (apo)B is the structural apoprotein of intestinally- and liver- derived lipoproteins and plays an important role in the transport of triacylglycerol (TAG) and cholesterol. Previous studies have examined the association between the APOB insertion/deletion (ins/del) polymorphism (rs17240441) and postprandial lipaemia in response to a single meal; however the findings have been inconsistent with studies often underpowered to detect genotype-lipaemia associations, focused mainly on men, or with limited postprandial characterisation of participants. In the present study, using a novel sequential test meal protocol which more closely mimics habitual eating patterns, we investigated the impact of APOB ins/del polymorphism on postprandial TAG, non-esterified fatty acids, glucose and insulin levels in healthy adults. FINDINGS: Healthy participants (n = 147) consumed a standard test breakfast (0 min; 49 g fat) and lunch (330 min; 29 g fat), with blood samples collected before (fasting) and on 11 subsequent occasions until 480 min after the test breakfast. The ins/ins homozygotes had higher fasting total cholesterol, LDL-cholesterol, TAG, insulin and HOMA-IR and lower HDL-cholesterol than del/del homozygotes (P < 0.017). A higher area under the time response curve (AUC) was evident for the postprandial TAG (P < 0.001) and insulin (P = 0.032) responses in the ins/ins homozygotes relative to the del/del homozygotes, where the genotype explained 35% and 7% of the variation in the TAG and insulin AUCs, respectively. CONCLUSIONS: In summary, our findings indicate that the APOB ins/del polymorphism is likely to be an important genetic determinant of the large inter-individual variability in the postprandial TAG and insulin responses to dietary fat intake.
Resumo:
The feedback mechanism used in a brain-computer interface (BCI) forms an integral part of the closed-loop learning process required for successful operation of a BCI. However, ultimate success of the BCI may be dependent upon the modality of the feedback used. This study explores the use of music tempo as a feedback mechanism in BCI and compares it to the more commonly used visual feedback mechanism. Three different feedback modalities are compared for a kinaesthetic motor imagery BCI: visual, auditory via music tempo, and a combined visual and auditory feedback modality. Visual feedback is provided via the position, on the y-axis, of a moving ball. In the music feedback condition, the tempo of a piece of continuously generated music is dynamically adjusted via a novel music-generation method. All the feedback mechanisms allowed users to learn to control the BCI. However, users were not able to maintain as stable control with the music tempo feedback condition as they could in the visual feedback and combined conditions. Additionally, the combined condition exhibited significantly less inter-user variability, suggesting that multi-modal feedback may lead to more robust results. Finally, common spatial patterns are used to identify participant-specific spatial filters for each of the feedback modalities. The mean optimal spatial filter obtained for the music feedback condition is observed to be more diffuse and weaker than the mean spatial filters obtained for the visual and combined feedback conditions.
Resumo:
Objective. Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no ‘cure’ at the present time. Brain–computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. Approach. Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. Main results. It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). Significance. The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals