980 resultados para Intensity-modulated radiotherapy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the delivery of advanced radiotherapy treatment techniques modulated beams are utilised to increase dose conformity across the target volume. Recent investigations have highlighted differential cellular responses to modulated radiation fields particularly in areas outside the primary treatment field that cannot be accounted for by scattered dose alone. In the present study, we determined the DNA damage response within the normal human fibroblast AG0-1522B and the prostate cancer cell line DU-145 utilising the DNA damage assay. Cells plated in slide flasks were exposed to 1 Gy uniform or modulated radiation fields. Modulated fields were delivered by shielding 25%, 50% or 75% of the flask during irradiation. The average number of 53BP1 or ?H2AX foci was measured in 2 mm intervals across the slide area. Following 30 minutes after modulated radiation field exposure an increase in the average number of foci out-of-field was observed when compared to non-irradiated controls. In-field, a non-uniform response was observed with a significant decrease in the average number of foci compared to uniformly irradiated cells. Following 24 hrs after exposure there is evidence for two populations of responding cells to bystander signals in-and out-of-field. There was no significant difference in DNA damage response between 25%, 50% or 75% modulated fields. The response was dependent on cellular secreted intercellular signalling as physical inhibition of intercellular communication abrogated the observed response. Elevated residual DNA damage observed within out-of-field regions decreased following addition of an inducible nitric oxide synthase inhibitor (Aminoguanidine). These data show, for the first time, differential DNA damage responses in-and out-of-field following modulated radiation field delivery. This study provides further evidence for a role of intercellular communication in mediating cellular radiobiological response to modulated radiation fields and may inform the refinement of existing radiobiological models for the optimization of advanced radiotherapy treatment plans. © 2012 Trainor et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: High local control rates are achieved in stage I lung cancer using stereotactic ablative radiotherapy. Target delineation is commonly based on four-dimensional computed tomography (CT) scans. Target volumes defined by positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional') F-fluorodeoxyglucose (F-FDG) PET/CT. Materials and methods: For 16 stage I non-small cell lung cancer tumours, six approaches for deriving PET target volumes were evaluated: manual contouring, standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV (35%SUV), 41% of SUV (41%SUV) and two different source to background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum intensity projection (MIP ITV). Volumetric and positional correlation was assessed using the Dice similarity coefficient (DSC). Results: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV = 0.63, 41%SUV = 0.57. SBR-1 = 0.52, SBR-2 = 0.49. PET-based target volumes were smaller than corresponding MIP ITVs. Conclusions: Conventional three-dimensional F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use (MIP ITV). Caution is required in using three-dimensional PET for motion encompassing target volume delineation. © 2012 The Royal College of Radiologists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: High local control rates are achieved in stage I lung cancer using
stereotactic ablative radiotherapy. Target delineation is commonly based on
four-dimensional computed tomography (CT) scans. Target volumes defined by
positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional')
(18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT.

MATERIALS AND METHODS: For 16 stage I non-small cell lung cancer tumours, six
approaches for deriving PET target volumes were evaluated: manual contouring,
standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV
(35%SUV(MAX)), 41% of SUV(MAX) (41%SUV(MAX)) and two different source to
background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum
intensity projection (MIP(MOD) ITV). Volumetric and positional correlation was
assessed using the Dice similarity coefficient (DSC).

RESULTS: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP(MOD) ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV(MAX) = 0.63, 41%SUV(MAX) = 0.57. SBR-1 = 0.52, SBR-2 =0.49. PET-based target volumes were smaller than corresponding MIP ITVs.

CONCLUSIONS: Conventional three-dimensional (18)F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use
(MIP(MOD) ITV). Caution is required in using three-dimensional PET for motion
encompassing target volume delineation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To investigate the effects of using volumetric modulated arc therapy (VMAT) and/or voluntary moderate deep inspiration breath-hold (vmDIBH) in the radiation therapy (RT) of left-sided breast cancer including the regional lymph nodes.

MATERIALS AND METHODS: For 13 patients, four treatment combinations were compared; 3D-conformal RT (i.e., forward IMRT) in free-breathing 3D-CRT(FB), 3D-CRT(vmDIBH), 2 partial arcs VMAT(FB), and VMAT(vmDIBH). Prescribed dose was 42.56 Gy in 16 fractions. For 10 additional patients, 3D-CRT and VMAT in vmDIBH only were also compared.

RESULTS: Dose conformity, PTV coverage, ipsilateral and total lung doses were significantly better for VMAT plans compared to 3D-CRT. Mean heart dose (D(mean,heart)) reduction in 3D-CRT(vmDIBH) was between 0.9 and 8.6 Gy, depending on initial D(mean,heart) (in 3D-CRT(FB) plans). VMAT(vmDIBH) reduced the D(mean,heart) further when D(mean,heart) was still >3.2 Gy in 3D-CRT(vmDIBH). Mean contralateral breast dose was higher for VMAT plans (2.7 Gy) compared to 3DCRT plans (0.7 Gy).

CONCLUSIONS: VMAT and 3D-CRT(vmDIBH) significantly reduced heart dose for patients treated with locoregional RT of left-sided breast cancer. When Dmean,heart exceeded 3.2 Gy in 3D-CRT(vmDIBH) plans, VMAT(vmDIBH) resulted in a cumulative heart dose reduction. VMAT also provided better target coverage and reduced ipsilateral lung dose, at the expense of a small increase in the dose to the contralateral breast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in cancer radiotherapy is to deliver a lethal dose of radiation to the target volume while minimizing damage to the surrounding normal tissue. We have proposed a model on how treatment efficacy might be improved by interfering with biological responses to DNA damage using exogenous electric fields as a strategy to drastically reduce radiation doses in cancer therapy. This approach is demonstrated at this Laboratory through case studies with prokaryotes (bacteria) and eukaryotes (yeast) cells, in which cellkilling rates induced by both gamma radiation and exogenous electric fields were measured. It was found that when cells exposed to gamma radiation are immediately submitted to a weak electric field, cell death increases more than an order of magnitude compared to the effect of radiation alone. This finding suggests, although does not prove, that DNA damage sites are reached and recognized by means of long-range electric DNA-protein interaction, and that exogenous electric fields could destructively interfere with this process. As a consequence, DNA repair is avoided leading to massive cell death. Here we are proposing the use this new technique for the design and construction of novel radiotherapy facilities associated with linac generated gamma beams under controlled conditions of dose and beam intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: evaluation and comparison of volumetric modulated RapidarcTM radiotherapy (RA-IMRT) vs linac based Stereotactic body radiotherapy (SBRT) in the salvage treatment of isolated lymph node recurrences in patients affected by gynaecological cancer. Materials and Methods From January 2010 to September 2011, 15 patients affected by isolated lymph nodes recurrence of gynaecological cancer underwent salvage radiotherapy after conventional imaging staging with CT and 18-FDG-PET/CT. Two different radiotherapy techniques were used in this study: RA-IMRT (RapidarcTM implemented radiotherapy Varian Medical System, Palo Alto, CA, USA) or SBRT (BrainLAB, Feldkirchen, Germany). Five patients underwent CT scan and all patients underwent 18FDG-PET/CT for pre-treatment evaluation and staging. The mean total dose delivered was 54.3 Gy (range 50-60 Gy with conventional fractionation and 27.4 Gy (range 12-40 Gy hypofractionation) for RA-IMRT and SBRT respectively. The mean number of fractions was 27.6 fractions (range 25-31) and 3-4 fractions , the mean overall treatment duration was 40.5 days (range 36-45) and 6.5 days (range 5-8 days) for RA-IMRT and SBRT respectively. Results: At the time of the analysis, October 2011, the overall survival was 92.3 % (80% for RA-IMRT and 100% for SBRT). Six patients are alive with no evidence of disease and also six patients are alive with clinically evident disease in other sites (40% and 50% patients RA-IMRT vs SBRT respectively, one patient died for systemic progression of disease and two patient were not evaluable at this time. Conclusions: Our preliminary results showed that, the use of RA-IMRT and SBRT are an excellent local therapy for isolated lymph nodes recurrences of gynaecological cancer with a good toxicity profile and local control rate, even if any long term survivors would be expected. New treatment modalities like Cyberknife are also being implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates the relation of perceived arousal (continuous self-rating), autonomic nervous system activity (heart rate, heart rate variability) and musical characteristics (sound intensity, musical rhythm) upon listening to a complex musical piece. Twenty amateur musicians listened to two performances of Chopin's "Tristesse" with different rhythmic shapes. Besides conventional statistical methods for analyzing psychophysiological reactions (heart rate, respiration rate) and musical variables, semblance analysis was used. Perceived arousal correlated strongly with sound intensity; heart rate showed only a partial response to changes in sound intensity. Larger changes in heart rate were caused by the version with more rhythmic tension. The low-/high-frequency ratio of heart rate variability increased-whereas the high frequency component decreased-during music listening. We conclude that autonomic nervous system activity can be modulated not only by sound intensity but also by the interpreter's use of rhythmic tension. Semblance analysis enables us to track the subtle correlations between musical and physiological variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motion of lung tumors during respiration makes the accurate delivery of radiation therapy to the thorax difficult because it increases the uncertainty of target position. The adoption of four-dimensional computed tomography (4D-CT) has allowed us to determine how a tumor moves with respiration for each individual patient. Using information acquired during a 4D-CT scan, we can define the target, visualize motion, and calculate dose during the planning phase of the radiotherapy process. One image data set that can be created from the 4D-CT acquisition is the maximum-intensity projection (MIP). The MIP can be used as a starting point to define the volume that encompasses the motion envelope of the moving gross target volume (GTV). Because of the close relationship that exists between the MIP and the final target volume, we investigated four MIP data sets created with different methodologies (3 using various 4D-CT sorting implementations, and one using all available cine CT images) to compare target delineation. It has been observed that changing the 4D-CT sorting method will lead to the selection of a different collection of images; however, the clinical implications of changing the constituent images on the resultant MIP data set are not clear. There has not been a comprehensive study that compares target delineation based on different 4D-CT sorting methodologies in a patient population. We selected a collection of patients who had previously undergone thoracic 4D-CT scans at our institution, and who had lung tumors that moved at least 1 cm. We then generated the four MIP data sets and automatically contoured the target volumes. In doing so, we identified cases in which the MIP generated from a 4D-CT sorting process under-represented the motion envelope of the target volume by more than 10% than when measured on the MIP generated from all of the cine CT images. The 4D-CT methods suffered from duplicate image selection and might not choose maximum extent images. Based on our results, we suggest utilization of a MIP generated from the full cine CT data set to ensure a representative inclusive tumor extent, and to avoid geometric miss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The risk of second malignant neoplasms (SMNs) following prostate radiotherapy is a concern due to the large population of survivors and decreasing age at diagnosis. It is known that parallel-opposed beam proton therapy carries a lower risk than photon IMRT. However, a comparison of SMN risk following proton and photon arc therapies has not previously been reported. The purpose of this study was to predict the ratio of excess relative risk (RRR) of SMN incidence following proton arc therapy to that after volumetric modulated arc therapy (VMAT). Additionally, we investigated the impact of margin size and the effect of risk-minimized proton beam weighting on predicted RRR. Physician-approved treatment plans were created for both modalities for three patients. Therapeutic dose was obtained with differential dose-volume histograms from the treatment planning system, and stray dose was estimated from the literature or calculated with Monte Carlo simulations. Then, various risk models were applied to the total dose. Additional treatment plans were also investigated with varying margin size and risk-minimized proton beam weighting. The mean RRR ranged from 0.74 to 0.99, depending on risk model. The additional treatment plans revealed that the RRR remained approximately constant with varying margin size, and that the predicted RRR was reduced by 12% using a risk-minimized proton arc therapy planning technique. In conclusion, proton arc therapy was found to provide an advantage over VMAT in regard to predicted risk of SMN following prostate radiotherapy. This advantage was independent of margin size and was amplified with risk-optimized proton beam weighting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed malignancy in males in the Western world with one in six males diagnosed in their lifetime. Current clinical prognostication groupings use pathologic Gleason score, pre-treatment prostatic-specific antigen and Union for International Cancer Control-TNM staging to place patients with localized CaP into low-, intermediate- and high-risk categories. These categories represent an increasing risk of biochemical failure and CaP-specific mortality rates, they also reflect the need for increasing treatment intensity and justification for increased side effects. In this article, we point out that 30-50% of patients will still fail image-guided radiotherapy or surgery despite the judicious use of clinical risk categories owing to interpatient heterogeneity in treatment response. To improve treatment individualization, better predictors of prognosis and radiotherapy treatment response are needed to triage patients to bespoke and intensified CaP treatment protocols. These should include the use of pre-treatment genomic tests based on DNA or RNA indices and/or assays that reflect cancer metabolism, such as hypoxia assays, to define patient-specific CaP progression and aggression. More importantly, it is argued that these novel prognostic assays could be even more useful if combined together to drive forward precision cancer medicine for localized CaP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The excitation of Fast Magnetosonic (FMS)waves by a cylindrical array of parallel tethers carrying timemodulated current is discussed. The tethers would fly vertical in the equatorial plane, which is perpendicular to the geomagnetic field when its tilt is ignored, and would be stabilized by the gravity gradient. The tether array would radiate a single FMS wave. In the time-dependent background made of geomagnetic field plus radiated wave, plasma FMS perturbations are excited in the array vicinity through a parametric instability. The growth rate is estimated by truncating the evolution equation for FMS perturbations to the two azimuthal modes of lowest order. Design parameters such as tether length and number, required power and mass are discussed for Low Earth Orbit conditions. The array-attached wave structure would have the radiated wave controlled by the intensity and modulation frequency of the currents, making an active experiment on non-linear low frequency waves possible in real space plasma conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Radiotherapy is planned to achieve the optimal physical dose distribution to the target tumour volume whilst minimising dose to the surrounding normal tissue. Recent in vitro experimental evidence has demonstrated an important role for intercellular communication in radiobiological responses following non-uniform exposures. This study aimed to model the impact of these effects in the context of techniques involving highly modulated radiation fields or spatially fractionated treatments such as GRID therapy.

METHODS: Using the small animal radiotherapy research platform (SARRP) as a key enabling technology to deliver precision imaged-guided radiotherapy, it is possible to achieve spatially modulated dose distributions that model typical clinical scenarios. In this work, we planned uniform and spatially fractionated dose distributions using multiple isocentres with beam sizes of 0.5 - 5 mm to obtain 50% volume coverage in a subcutaneous murine tumour model, and applied a model of cellular response that incorporates intercellular communication to assess the potential impact of signalling effects with different ranges.

RESULTS: Models of GRID treatment plans which incorporate intercellular signalling showed increased cell killing within the low dose region. This results in an increase in the Equivalent Uniform Dose (EUD) for GRID exposures compared to standard models, with some GRID exposures being predicted to be more effective than uniform delivery of the same physical dose.

CONCLUSIONS: This study demonstrates the potential impact of radiation induced signalling on tumour cell response for spatially fractionated therapies and identifies key experiments to validate this model and quantify these effects in vivo.

ADVANCES IN KNOWLEDGE: This study highlights the unique opportunities now possible using advanced preclinical techniques to develop a foundation for biophysical optimisation in radiotherapy treatment planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: K-ras mutation is found in up to 40% of LARC. Sor is a multitarget tyrosine kinase inhibitor including raf and VEGFR and has demonstrated radiosensitizing effects. Sor might improve outcome of standard preoperative radio-chemotherapy in patients with k-ras mutated LARC. Methods: Pts with k-ras mutated T3-4 and/or N+, M0 disease by MRI were included. Recommended doses from phase I part consisted of RT 1.8 Gy/day x25 with Cape 825mg/m2bid x 33 in combination with Sor 400mg/d. The primary endpoint for the phase II part was pathological complete response (pCR) prospectively defined as grade 3 (near complete regression) or 4 (complete regression) in the histological grading system according to Dworak (DC). A pCR rate of 8% or lower was considered uninteresting and of 22% or higher was promising. Secondary endpoints included sphincter preservation, R0 resection, downstaging and safety. Results: 54 pts were treated in 18 centers in Switzerland und Hungary, 40 pts were included into the single arm phase II part. Median dose intensity per day was 100.0% for RT, 98.6% for Cape and 100.0% for Sor respectively. pCR rate was 60.0% (95%CI: 43.3%, 75.1%) by central independent pathological review (15.0% DC grade 4; 45.0% DC grade 3). Sphincter preservation was achieved in 89.5%, R0 resection in 94.7% and downstaging in 81.6% of the pts. The most common grade 3 toxicities included diarrhea (15.0%), skin toxicity outside of the RT field (12.5%), pain (7.5%), skin toxicity in RT field, proctitis, fatigue and cardiac ischemia (each 5.0%). Laboratory AEs grade 3/4 were neutropenia (1 pt grade 4; 1 grade 3), creatinine elevation (1 pt grade 3). Conclusions: The combination of Sor to standard RCT with Cape in k-ras mutated LARC tumors is highly active with acceptable toxicity and deserves further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the scored Patient-generated Subjective Global Assessment (PG-SGA) tool as an outcome measure in clinical nutrition practice and determine its association with quality of life (QoL). DESIGN: A prospective 4 week study assessing the nutritional status and QoL of ambulatory patients receiving radiation therapy to the head, neck, rectal or abdominal area. SETTING: Australian radiation oncology facilities. SUBJECTS: Sixty cancer patients aged 24-85 y. INTERVENTION: Scored PG-SGA questionnaire, subjective global assessment (SGA), QoL (EORTC QLQ-C30 version 3). RESULTS: According to SGA, 65.0% (39) of subjects were well-nourished, 28.3% (17) moderately or suspected of being malnourished and 6.7% (4) severely malnourished. PG-SGA score and global QoL were correlated (r=-0.66, P<0.001) at baseline. There was a decrease in nutritional status according to PG-SGA score (P<0.001) and SGA (P<0.001); and a decrease in global QoL (P<0.001) after 4 weeks of radiotherapy. There was a linear trend for change in PG-SGA score (P<0.001) and change in global QoL (P=0.003) between those patients who improved (5%) maintained (56.7%) or deteriorated (33.3%) in nutritional status according to SGA. There was a correlation between change in PG-SGA score and change in QoL after 4 weeks of radiotherapy (r=-0.55, P<0.001). Regression analysis determined that 26% of the variation of change in QoL was explained by change in PG-SGA (P=0.001). CONCLUSION: The scored PG-SGA is a nutrition assessment tool that identifies malnutrition in ambulatory oncology patients receiving radiotherapy and can be used to predict the magnitude of change in QoL.