982 resultados para Integral Manifolds
Resumo:
Conventional 3D Integral imaging suffers from limited image depth range due to the fixed distance between the display panel and the lens array, while digital Fresnel holography suffers from a narrow viewing angle due to the lack of a high resolution spatial light modulator. This paper proposes an original system which combines the advantages of these two techniques to provide an integral imaging system of a reasonable viewing angle with accommodation cues. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
A boundary integral technique has been developed for the numerical simulation of the air flow for the Aaberg exhaust system. For the steady, ideal, irrotational air flow induced by a jet, the air velocity is an analytical function. The solution of the problem is formulated in the form of a boundary integral equation by seeking the solution of a mixed boundary-value problem of an analytical function based on the Riemann-Hilbert technique. The boundary integral equation is numerically solved by converting it into a system of linear algebraic equations, which are solved by the process of the Gaussian elimination. The air velocity vector at any point in the solution domain is then computed from the air velocity on the boundary of the solution domains.
Resumo:
The present paper considers distributed consensus algorithms for agents evolving on a connected compact homogeneous (CCH) manifold. The agents track no external reference and communicate their relative state according to an interconnection graph. The paper first formalizes the consensus problem for synchronization (i.e. maximizing the consensus) and balancing (i.e. minimizing the consensus); it thereby introduces the induced arithmetic mean, an easily computable mean position on CCH manifolds. Then it proposes and analyzes various consensus algorithms on manifolds: natural gradient algorithms which reach local consensus equilibria; an adaptation using auxiliary variables for almost-global synchronization or balancing; and a stochastic gossip setting for global synchronization. It closes by investigating the dependence of synchronization properties on the attraction function between interacting agents on the circle. The theory is also illustrated on SO(n) and on the Grassmann manifolds. ©2009 IEEE.
Resumo:
The present paper considers distributed consensus algorithms that involve N agents evolving on a connected compact homogeneous manifold. The agents track no external reference and communicate their relative state according to a communication graph. The consensus problem is formulated in terms of the extrema of a cost function. This leads to efficient gradient algorithms to synchronize (i.e., maximizing the consensus) or balance (i.e., minimizing the consensus) the agents; a convenient adaptation of the gradient algorithms is used when the communication graph is directed and time-varying. The cost function is linked to a specific centroid definition on manifolds, introduced here as the induced arithmetic mean, that is easily computable in closed form and may be of independent interest for a number of manifolds. The special orthogonal group SO (n) and the Grassmann manifold Grass (p, n) are treated as original examples. A link is also drawn with the many existing results on the circle. © 2009 Society for Industrial and Applied Mathematics.
Resumo:
We give simple formulas for the canonical metric, gradient, Lie derivative, Riemannian connection, parallel translation, geodesics and distance on the Grassmann manifold of p-planes in ℝn. In these formulas, p-planes are represented as the column space of n × p matrices. The Newton method on abstract Riemannian manifolds proposed by Smith is made explicit on the Grassmann manifold. Two applications - computing an invariant subspace of a matrix and the mean of subspaces - are worked out.
Resumo:
This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms.
Resumo:
This paper provides an introduction to the topic of optimization on manifolds. The approach taken uses the language of differential geometry, however,we choose to emphasise the intuition of the concepts and the structures that are important in generating practical numerical algorithms rather than the technical details of the formulation. There are a number of algorithms that can be applied to solve such problems and we discuss the steepest descent and Newton's method in some detail as well as referencing the more important of the other approaches.There are a wide range of potential applications that we are aware of, and we briefly discuss these applications, as well as explaining one or two in more detail. © 2010 Springer -Verlag Berlin Heidelberg.
Resumo:
Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design effcient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. By dealing internally with most of the differential geometry, the package aims particularly at lowering the entrance barrier. © 2014 Nicolas Boumal.
Resumo:
A novel algorithm of phase reconstruction based on the integral of phase gradient is presented. The algorithm directly derives two real-valued partial derivatives from three phase-shifted interferograms. Through integrating the phase derivatives, the desired phase is reconstructed. During the phase reconstruction process, there is no need for an extra rewrapping manipulation to ensure values of the phase derivatives lie in the interval [-pi, pi] as before, thus this algorithm can prevent error or distortion brought about by the phase unwrapping operation. Additionally, this algorithm is fast and easy to implement, and insensitive to the nonuniformity of the intensity distribution of the interferogram. The feasibility of the algorithm is demonstrated by both computer simulation and experiment.
Resumo:
We generalize the Faddeev-Jackiw canonical path integral quantization for the scenario of a Jacobian with J=1 to that for the general scenario of non-unit Jacobian, give the representation of the quantum transition amplitude with symplectic variables and obtain the generating functionals of the Green function and connected Green function. We deduce the unified expression of the symplectic field variable functions in terms of the Green function or the connected Green function with external sources. Furthermore, we generally get generating functionals of the general proper vertices of any n-points cases under the conditions of considering and not considering Grassmann variables, respectively; they are regular and are the simplest forms relative to the usual field theory.