910 resultados para Instrument flying.
Resumo:
A study was conducted by researchers to address the individuation of performance with electronic instruments. The researchers derived a working concept of style as distinct from structure in an activity, which was proposed as a useful framework for considering virtuosity and individuality in interactions with technology, including musical ones. The researchers proposed an alliance between constraint and the development of style. Another study was described, which explored the emergence of personal performance styles in experienced performers with a novel, constrained electronic musical instrument. The study aimed to represent aspects of a realistic situation within the new interfaces for musical expression (NIME) community where a performer needed to determine how to perform with a new instrument for which there was no established performance practice and instruction manual.
Resumo:
WASP-13b is a sub-Jupiter mass exoplanet orbiting a G1V type star with a period of 4.35 d.The current uncertainty in its impact parameter (0 < b < 0.46) results in poorly definedstellar and planetary radii. To better constrain the impact parameter, we have obtained highprecisiontransit observations with the rapid imager to search for exoplanets (RISE) instrumentmounted on 2.0-m Liverpool Telescope. We present four new transits which are fitted witha Markov chain Monte Carlo routine to derive accurate system parameters. We found anorbital inclination of 85. ◦ 2 ± 0. ◦ 3 resulting in stellar and planetary radii of 1.56 ± 0.04 Rand 1.39 ± 0.05RJup, respectively. This suggests that the host star has evolved off the mainsequence and is in the hydrogen-shell-burning phase.We also discuss how the limb darkeningaffects the derived system parameters.With a density of 0.17ρJ,WASP-13b joins the group oflow-density planets whose radii are too large to be explained by standard irradiation models.We derive a new ephemeris for the system, T0 = 245 5575.5136 ± 0.0016 (HJD) and P =4.353 011 ± 0.000 013 d. The planet equilibrium temperature (Tequ = 1500 K) and the brighthost star (V = 10.4mag) make it a good candidate for follow-up atmospheric studies.
Resumo:
For many years, orientation in migratory birds has primarily been studied in the laboratory. Although a laboratory-based setting enables greater control over environmental cues, the laboratory-based findings must be confirmed in the wild in free-flying birds to be able to fully understand how birds orient during migration. Despite the difficulties associated with following free-flying birds over long distances, a number of possibilities currently exist for tracking the long distance, sometimes even globe-spanning, journeys undertaken by migrating birds. Birds fitted with radio transmitters can either be located from the ground or from aircraft (conventional tracking), or from space. Alternatively, positional information obtained by onboard equipment (e.g., GPS units) can be transmitted to receivers in space. Use of these tracking methods has provided a wealth of information on migratory behaviors that are otherwise very difficult to study. Here, we focus on the progress in understanding certain components of the migration-orientation system. Comparably exciting results can be expected in the future from tracking free-flying migrants in the wild. Use of orientation cues has been studied in migrating raptors (satellite telemetry) and thrushes (conventional telemetry), highlighting that findings in the natural setting may not always be as expected on the basis of cage-experiments. Furthermore, field tracking methods combined with experimental approaches have finally allowed for an extension of the paradigmatic displacement experiments performed by Perdeck in 1958 on the short-distance, social migrant, the starling, to long-distance migrating storks and long-distance, non-socially migrating passerines. Results from these studies provide fundamental insights into the nature of the migratory orientation system that enables experienced birds to navigate and guide inexperienced, young birds to their species-specific winter grounds.
Resumo:
BACKGROUND: Measures that reflect patients' assessment of their health are of increasing importance as outcome measures in randomised controlled trials. The methodological approach used in the pre-validation development of new instruments (item generation, item reduction and question formatting) should be robust and transparent. The totality of the content of existing PRO instruments for a specific condition provides a valuable resource (pool of items) that can be utilised to develop new instruments. Such 'top down' approaches are common, but the explicit pre-validation methods are often poorly reported. This paper presents a systematic and generalisable 5-step pre-validation PRO instrument methodology.
METHODS: The method is illustrated using the example of the Aberdeen Glaucoma Questionnaire (AGQ). The five steps are: 1) Generation of a pool of items; 2) Item de-duplication (three phases); 3) Item reduction (two phases); 4) Assessment of the remaining items' content coverage against a pre-existing theoretical framework appropriate to the objectives of the instrument and the target population (e.g. ICF); and 5) qualitative exploration of the target populations' views of the new instrument and the items it contains.
RESULTS: The AGQ 'item pool' contained 725 items. Three de-duplication phases resulted in reduction of 91, 225 and 48 items respectively. The item reduction phases discarded 70 items and 208 items respectively. The draft AGQ contained 83 items with good content coverage. The qualitative exploration ('think aloud' study) resulted in removal of a further 15 items and refinement to the wording of others. The resultant draft AGQ contained 68 items.
CONCLUSIONS: This study presents a novel methodology for developing a PRO instrument, based on three sources: literature reporting what is important to patient; theoretically coherent framework; and patients' experience of completing the instrument. By systematically accounting for all items dropped after the item generation phase, our method ensures that the AGQ is developed in a transparent, replicable manner and is fit for validation. We recommend this method to enhance the likelihood that new PRO instruments will be appropriate to the research context in which they are used, acceptable to research participants and likely to generate valid data.
Resumo:
PURPOSE: To identify vision Patient-Reported Outcomes instruments relevant to glaucoma and assess their content validity.
METHODS: MEDLINE, MEDLINE in Process, EMBASE and SCOPUS (to January 2009) were systematically searched. Observational studies or randomised controlled trials, published in English, reporting use of vision instruments in glaucoma studies involving adults were included. In addition, reference lists were scanned to identify additional studies describing development and/or validation to ascertain the final version of the instruments. Instruments' content was then mapped onto a theoretical framework, the World Health Organization International Classification of Functioning, Disability and Health. Two reviewers independently evaluated studies for inclusion and quality assessed instrument content.
RESULTS: Thirty-three instruments were identified. Instruments were categorised into thirteen vision status, two vision disability, one vision satisfaction, five glaucoma status, one glaucoma medication related to health status, five glaucoma medication side effects and six glaucoma medication satisfaction measures according to each instruments' content. The National Eye Institute Visual Function Questionnaire-25, Impact of Vision Impairment and Treatment Satisfaction Survey-Intraocular Pressure had the highest number of positive ratings in the content validity assessment.
CONCLUSION: This study provides a descriptive catalogue of vision-specific PRO instruments, to inform the choice of an appropriate measure of patient-reported outcomes in a glaucoma context.
Resumo:
Tissue micro array (TMA) is based on the idea of applying miniaturization and a high throughput approach to hybridization-based analyses of tissues. It facilitates biomedical research on a large scale in a single experiment; thus representing one of the most commonly used technologies in translational research. A critical analysis of the existing TMA instruments indicates that there are potential constraints in terms of portability, apart from costs and complexity. This paper will present the development of an affordable, configurable, and portable TMA instrument to allow an efficient collection of tissues, especially in instrument-to-tissue scenarios. The purely mechanical instrument requires no energy sources other than the user, is light weight, portable, and simple to use. [DOI: 10.1115/1.4004922]
Resumo:
Two short site-specific pieces performed with others at the Royal Ulster Agricultural Show for Kabosh Theatre Company, as part of their continuing effort to broaden theatre audiences. One, using the form of the Edwardian melodrama, tells of Marconi's efforts to create a device to communicate with the dead. The second tells the tale of the Christian Brother who invented the submarine, John Philip Holland.
Resumo:
The transfer of entanglement from optical fields to qubits provides a viable approach to entangling remote qubits in a quantum network. In cavity quantum electrodynamics, the scheme relies on the interaction between a photonic resource and two stationary intracavity atomic qubits. However, it might be hard in practice to trap two atoms simultaneously and synchronize their coupling to the cavities. To address this point, we propose and study entanglement transfer from cavities driven by an entangled external field to controlled flying qubits. We consider two exemplary non-Gaussian driving fields: NOON and entangled coherent states. We show that in the limit of long coherence time of the cavity fields, when the dynamics is approximately unitary, entanglement is transferred from the driving field to two atomic qubits that cross the cavities. On the other hand, a dissipation-dominated dynamics leads to very weakly quantum-correlated atomic systems, as witnessed by vanishing quantum discord.