929 resultados para Infrasound and low frequency noise-exposure
Resumo:
The purpose of this investigation was to evaluate body image dissatisfaction in relation to low self-esteem due to physical appearance in students of the Faculty of Medicine at the University of Los Andes in Mérida, Venezuela. It was a non-experimental and correlational study. The sample included 189 students (27% male and 73% female) with an average age of 19.58 ± 1.57 (men: 19.81 years of age ± 1.74 and women: 20.24 years of age ± 1.76). Participants were intentionally selected from first-year courses of the Medicine, Nursing and Nutrition programs. The Body Shape Questionnaire (BSQ) (Cooper and Taylor, 1987) was the instrument used to measure body image dissatisfaction and Graffar’s modified method (Méndez and De Méndez, 1994) was applied to determine the participants’ socioeconomic status. A descriptive analysis (frequency, percentages, mean) and an inferential analysis (one-way ANOVA) were applied to the data using SPSS (Statistical Package for Social Sciences) version 9.0. One of the most important findings in this study was the determination of a statistically significant relationship between dissatisfaction and body image and between low self-esteem and gender χ2 (2, N= 189) = 9.686, p=0.008. Using ANOVA also helped determine that differences in the mean for dissatisfaction and low self-esteem levels with body image and gender are statistically significant, F= 11.236; p=0.008, F=10.23; p=0.002, respectively. Conclusions: results obtained suggest a relationship between dissatisfaction and low self-esteem due to physical appearance. Consequently, subjects reject their body image because of a distorted or undistorted perception of their physical appearance, which can possibly affect self-esteem. Moreover, it is observed that the students’ psychological health is more related to their satisfaction with their body-image than to the way their body image is perceived. Consequently, this group of participants must be analyzed regarding their self-esteem due to body image, as an expression in the institutional environment. It is also important to emphasize that gender may be a risk factor concerning eating disorders. We believe the foregoing because women showed higher dissatisfaction levels because of their physical appearance being conditioned by a higher dissatisfaction with their perceived body image, which is characterized by an overestimation of the physical dimension of their body image.
Resumo:
Three-dimensional direct numerical simulations (DNS) have been performed on a finite-size hemispherecylinder model at angle of attack AoA = 20◦ and Reynolds numbers Re = 350 and 1000. Under these conditions, massive separation exists on the nose and lee-side of the cylinder, and at both Reynolds numbers the flow is found to be unsteady. Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are employed in order to study the primary instability that triggers unsteadiness at Re = 350. The dominant coherent flow structures identified at the lower Reynolds number are also found to exist at Re = 1000; the question is then posed whether the flow oscillations and structures found at the two Reynolds numbers are related. POD and DMD computations are performed using different subdomains of the DNS computational domain. Besides reducing the computational cost of the analyses, this also permits to isolate spatially localized oscillatory structures from other, more energetic structures present in the flow. It is found that POD and DMD are in general sensitive to domain truncation and noneducated choices of the subdomain may lead to inconsistent results. Analyses at Re = 350 show that the primary instability is related to the counter rotating vortex pair conforming the three-dimensional afterbody wake, and characterized by the frequency St ≈ 0.11, in line with results in the literature. At Re = 1000, vortex-shedding is present in the wake with an associated broadband spectrum centered around the same frequency. The horn/leeward vortices at the cylinder lee-side, upstream of the cylinder base, also present finite amplitude oscillations at the higher Reynolds number. The spatial structure of these oscillations, described by the POD modes, is easily differentiated from that of the wake oscillations. Additionally, the frequency spectra associated with the lee-side vortices presents well defined peaks, corresponding to St ≈ 0.11 and its few harmonics, as opposed to the broadband spectrum found at the wake.
Resumo:
Three-dimensional Direct Numerical Simulations combined with Particle Image Velocimetry experiments have been performed on a hemisphere-cylinder at Reynolds number 1000 and angle of attack 20◦. At these flow conditions, a pair of vortices, so-called “horn” vortices, are found to be associated with flow separation. In order to understand the highly complex phenomena associated with this fully threedimensional massively separated flow, different structural analysis techniques have been employed: Proper Orthogonal and Dynamic Mode Decompositions, POD and DMD, respectively, as well as criticalpoint theory. A single dominant frequency associated with the von Karman vortex shedding has been identified in both the experimental and the numerical results. POD and DMD modes associated with this frequency were recovered in the analysis. Flow separation was also found to be intrinsically linked to the observed modes. On the other hand, critical-point theory has been applied in order to highlight possible links of the topology patterns over the surface of the body with the computed modes. Critical points and separation lines on the body surface show in detail the presence of different flow patterns in the base flow: a three-dimensional separation bubble and two pairs of unsteady vortices systems, the horn vortices, mentioned before, and the so-called “leeward” vortices. The horn vortices emerge perpendicularly from the body surface at the separation region. On the other hand, the leeward vortices are originated downstream of the separation bubble, as a result of the boundary layer separation. The frequencies associated with these vortical structures have been quantified.
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Resumo:
This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.
Resumo:
Diffuse radio emission in galaxy clusters has been observed with different size and properties. Giant radio halos (RH), Mpc-size sources found in merging clusters, and mini halos (MH), 0.1-0.5 Mpc size sources located in relaxed cool-core clusters, are thought to be distinct classes of objects with different formation mechanisms. However, recent observations have revealed the unexpected presence of diffuse emission on Mpc-scales in relaxed clusters that host a central MH and show no signs of major mergers. The study of these sources is still at the beginning and it is not yet clear what could be the origin of their unusual emission. The main goal of this thesis is to test the occurrence of these peculiar sources and investigate their properties using low frequency radio observations. This thesis consists in the study of a sample of 12 cool-core galaxy clusters which present some level of dynamical disturbances on large-scale. The heterogeneity of sources in the sample allowed me to investigate under which conditions a halo-type emission is present in MH clusters; and also to study the connection between AGN bubbles and the local environment. Using high sensitivity LOFAR observations, I have detected large-scale emission in four non-merging clusters, in addition to the central MH. I have constrained for the first time the spectral properties of diffuse emission in these double radio component galaxy clusters, and I have investigated the connection between their thermal and non-thermal emission for a better comprehension of the acceleration mechanism. Furthermore, I derived upper limits to the halo power for the other clusters in the sample, which could present large-scale diffuse emission under the detection threshold. Finally, I have reconstructed the duty-cycle of one of the most powerful AGN known, located at the centre of a galaxy cluster of the sample.
Resumo:
To assess the effects of a soy dietary supplement on the main biomarkers of cardiovascular health in postmenopausal women compared with the effects of low-dose hormone therapy (HT) and placebo. Double-blind, randomized and controlled intention-to-treat trial. Sixty healthy postmenopausal women, aged 40-60 years, 4.1 years mean time since menopause were recruited and randomly assigned to 3 groups: a soy dietary supplement group (isoflavone 90mg), a low-dose HT group (estradiol 1 mg plus noretisterone 0.5 mg) and a placebo group. Lipid profile, glucose level, body mass index, blood pressure and abdominal/hip ratio were evaluated in all the participants at baseline and after 16 weeks. Statistical analyses were performed using the χ2 test, Fisher's exact test, Kruskal-Wallis non-parametric test, analysis of variance (ANOVA), paired Student's t-test and Wilcoxon test. After a 16-week intervention period, total cholesterol decreased 11.3% and LDL-cholesterol decreased 18.6% in the HT group, but both did not change in the soy dietary supplement and placebo groups. Values for triglycerides, HDL-cholesterol, glucose level, body mass index, blood pressure and abdominal/hip ratio did not change over time in any of the three groups. The use of dietary soy supplement did not show any significant favorable effect on cardiovascular health biomarkers compared with HT. The trial is registered at the Brazilian Clinical Trials Registry (Registro Brasileiro de Ensaios Clínicos - ReBEC), number RBR-76mm75.
Resumo:
X-ray fluorescence (XRF) is a fast, low-cost, nondestructive, and truly multielement analytical technique. The objectives of this study are to quantify the amount of Na(+) and K(+) in samples of table salt (refined, marine, and light) and to compare three different methodologies of quantification using XRF. A fundamental parameter method revealed difficulties in quantifying accurately lighter elements (Z < 22). A univariate methodology based on peak area calibration is an attractive alternative, even though additional steps of data manipulation might consume some time. Quantifications were performed with good correlations for both Na (r = 0.974) and K (r = 0.992). A partial least-squares (PLS) regression method with five latent variables was very fast. Na(+) quantifications provided calibration errors lower than 16% and a correlation of 0.995. Of great concern was the observation of high Na(+) levels in low-sodium salts. The presented application may be performed in a fast and multielement fashion, in accordance with Green Chemistry specifications.
Resumo:
This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.
Resumo:
Sickle cell retinopathy (SCR) develops in up to 30% of sickle cell disease patients (SCD) during the second decade of life. Treatment for this affection remains palliative, so studies on its pathophysiology may contribute to the future development of novel therapies. SCR is more frequently observed in hemoglobin SC disease and derives from vaso-occlusion in the microvasculature of the retina leading to neovascularization and, eventually, to blindness. Circulating inflammatory cytokines, angiogenic factors, and their interaction may contribute to the pathophysiology of this complication. Angiopoietin (Ang)-1, Ang-2, soluble vascular cell adhesion molecule-1, intercellular adhesion molecule (ICAM)-1, E-selectin, P-selectin, IL1-β, TNF-α, pigment epithelium derived factor (PEDF) and vascular endothelial growth factor plasmatic levels were determined in 37 SCD patients with retinopathy, 34 without retinopathy, and healthy controls. We observed that sICAM-1 is significantly decreased, whereas PEDF is elevated in HbSC patients with retinopathy (P=0.012 and P=0.031, respectively). Ang-1, Ang-2 and IL1-β levels were elevated in SCD patients (P=0.001, P<0.001 and P=0.001, respectively), compared to controls, and HbSS patients presented higher levels of Ang-2 compared to HbSC (P<0.001). Our study supports the possible influence of sICAM-1 and PEDF on the pathophysiology of retinal neovascularization in SCD patients.
Resumo:
CONTEXT: Mothers recall early-onset constipation in children attending gastroenterology clinics. OBJECTIVES: To study the bowel habit of young children in the community to determine, first, whether early-onset constipation is confirmed in this setting and, second, the agreement between recalled and recorded bowel habit. METHODS:Defecation data of 57 children aged 6.0-40.7 mo were obtained by maternal recall (questionnaire on predominant stool characteristics) and by record (1,934 defecations registered prospectively at home and in the nursery). The bowel habit was classified according to stool frequency and proportion of stool characteristics (soft, hard and/or runny). Two criteria were used to classify recorded data, since the cutoff point for hard stools to identify constipation is undefined in children: predominant criterion and adult criterion, respectively with >50% and >25% of stools with altered consistency. Bowel habit categories were: adequate, constipation, functional diarrhea and "other bowel habit". Nonparametric statistics, and the Kappa index for agreement between recalled and recorded bowel habit, were used. RESULTS: Constipation occurred in 17.5%, 10.5%, 19.3% of the children by recall, the predominant and the adult criteria, respectively. Constipation was the main recalled alteration, vs 12.3% "other bowel habit". Only one child classified as having functional diarrhea (by the adult criterion). Agreement between recalled and recorded bowel habit was fair for constipation, by the predominant and the adult criteria (K = 0.28 and 0.24, respectively), but only slight (K <0.16) for other bowel habit categories. Individual data, however, pointed to a better relationship between recalled constipation and the adult rather than the predominant criterion. CONCLUSIONS: Frequent early-onset constipation was confirmed. Fair agreement between recalled and recorded constipation by the two used criteria indicates that recalled data are quite reliable to detect constipation.
Resumo:
Objective: This study investigated the effects of low-level laser therapy (LLLT) and electrical stimulation (ES) on bone loss in spinal cord-injured rats. Materials and Methods: Thirty-seven male Wistar rats were divided into four groups: standard control group (CG); spinal cord-injured control (SC); spinal cord-injured treated with laser (SCL; GaAlAs, 830 nm, CW, 30mW/cm, 250 J/cm(2)); and spinal cord-injured treated with electrical field stimulation (SCE; 1.5 MHz, 1: 4 duty cycles, 30 mW, 20 min). Biomechanical, densitometric, and morphometric analyses were performed. Results: SC rats showed a significant decrease in bone mass, biomechanical properties, and morphometric parameters (versus CG). SCE rats showed significantly higher values of inner diameter and internal and external areas of tibia diaphyses; and the SCL group showed a trend toward the same result (versus SC). No increase was found in either mechanical or densitometric parameters. Conclusion: We conclude that the mentioned treatments were able to initiate a positive bone-tissue response, maybe through stimulation of osteoblasts, which was able to determine the observed morphometric modifications. However, the evoked tissue response could not determine either biomechanical or densitometric modifications.
Resumo:
Context. Tight binaries discovered in young, nearby associations are ideal targets for providing dynamical mass measurements to test the physics of evolutionary models at young ages and very low masses. Aims. We report the binarity of TWA22 for the first time. We aim at monitoring the orbit of this young and tight system to determine its total dynamical mass using an accurate distance determination. We also intend to characterize the physical properties (luminosity, effective temperature, and surface gravity) of each component based on near-infrared photometric and spectroscopic observations. Methods. We used the adaptive-optics assisted imager NACO to resolve the components, to monitor the complete orbit and to obtain the relative near-infrared photometry of TWA22 AB. The adaptive-optics assisted integral field spectrometer SINFONI was also used to obtain medium-resolution (R(lambda) = 1500-2000) spectra in JHK bands. Comparison with empirical and synthetic librairies were necessary for deriving the spectral type, the effective temperature, and the surface gravity for each component of the system. Results. Based on an accurate trigonometric distance (17.5 +/- 0.2 pc) determination, we infer a total dynamical mass of 220 +/- 21 M(Jup) for the system. From the complete set of spectra, we find an effective temperature T(eff) = 2900(-200)(+200) K for TWA22A and T(eff) = 2900(-100)(+200) for TWA22 B and surface gravities between 4.0 and 5.5 dex. From our photometry and an M6 +/- 1 spectral type for both components, we find luminosities of log(L/L(circle dot)) = -2.11 +/- 0.13 dex and log(L/L(circle dot)) = -2.30 +/- 0.16 dex for TWA22 A and B, respectively. By comparing these parameters with evolutionary models, we question the age and the multiplicity of this system. We also discuss a possible underestimation of the mass predicted by evolutionary models for young stars close to the substellar boundary.
Resumo:
The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The demands for improvement in sound quality and reduction of noise generated by vehicles are constantly increasing, as well as the penalties for space and weight of the control solutions. A promising approach to cope with this challenge is the use of active structural-acoustic control. Usually, the low frequency noise is transmitted into the vehicle`s cabin through structural paths, which raises the necessity of dealing with vibro-acoustic models. This kind of models should allow the inclusion of sensors and actuators models, if accurate performance indexes are to be accessed. The challenge thus resides in deriving reasonable sized models that integrate structural, acoustic, electrical components and the controller algorithm. The advantages of adequate active control simulation strategies relies on the cost and time reduction in the development phase. Therefore, the aim of this paper is to present a methodology for simulating vibro-acoustic systems including this coupled model in a closed loop control simulation framework that also takes into account the interaction between the system and the control sensors/actuators. It is shown that neglecting the sensor/actuator dynamics can lead to inaccurate performance predictions.