976 resultados para Industrial electronics
Resumo:
This paper presents an experimental procedure to determine the acoustic and vibration behavior of an inverter-fed induction motor based on measurements of the current spectrum, acoustic noise spectrum, overall noise in dB, and overall A-weighted noise in dBA. Measurements are carried out on space-vector modulated 8-hp and 3-hp induction motor drives over a range of carrier frequencies at different modulation frequencies. The experimental data help to distinguish between regions of high and low acoustic noise levels. The measurements also bring out the impact of carrier frequency on the acoustic noise. The sensitivity of the overall noise to carrier frequency is indicative of the relative dominance of the high-frequency electromagnetic noise over mechanical and aerodynamic components of noise. Based on the measured current and acoustic noise spectra, the ratio of dynamic deflection on the stator surface to the product of fundamental and harmonic current amplitudes is obtained at each operating point. The variation of this ratio of deflection to current product with carrier frequency indicates the resonant frequency clearly and also gives a measure of the amplification of vibration at frequencies close to the resonant frequency. This ratio is useful to predict the magnitude of acoustic noise corresponding to significant time-harmonic currents flowing in the stator winding.
Resumo:
This paper proposes a technique to suppress low-order harmonics for an open-end winding induction motor drive for a full modulation range. One side of the machine is connected to a main inverter with a dc power supply, whereas the other inverter is connected to a capacitor from the other side. Harmonic suppression (with complete elimination of fifth- and seventh-order harmonics) is achieved by realizing dodecagonal space vectors using a combined pulsewidth modulation (PWM) control for the two inverters. The floating capacitor voltage is inherently controlled during the PWM operation. The proposed PWM technique is shown to be valid for the entire modulation range, including overmodulation and six-step mode of operation of the main inverter. Experimental results have been presented to validate the proposed technique.
Resumo:
In this paper, a multilevel dodecagonal voltage space vector structure with nineteen concentric dodecagons is proposed for the first time. This space vector structure is achieved by cascading two sets of asymmetric three-level inverters with isolated H-bridges on either side of an open-end winding induction motor. The dodecagonal structure is made possible by proper selection of dc link voltages and switching states of the inverters. The proposed scheme retains all the advantages of multilevel topologies as well as the advantages of dodecagonal voltage space vector structure. In addition to that, a generic and simple method for calculation of pulsewidth modulation timings using only sampled reference values (v(alpha) and v(beta)) is proposed. This enables the scheme to be used for any closed-loop application such as vector control. In addition, a new method of switching technique is proposed, which ensures minimum switching while eliminating the fifth-and seventh-order harmonics and suppressing the eleventh and thirteenth harmonics, eliminating the need for bulky filters. The motor phase voltage is a 24-stepped wave-form for the entire modulation range thereby reducing the number of switchings of the individual inverter modules. Experimental results for steady-state operation, transient operation, including start-up have been presented and the results of fast Fourier transform analysis is also presented for validating the proposed concept.
Resumo:
Multilevel inverters with dodecagonal (12-sided polygon) voltage space vector (SV) structures have advantages like extension of linear modulation range, elimination of fifth and seventh harmonics in phase voltages and currents for the full modulation range including extreme 12-step operation, reduced device voltage ratings, lesser dv/dt stresses on devices and motor phase windings resulting in lower EMI/EMC problems, and lower switching frequency-making it more suitable for high-power drive applications. This paper proposes a simple method to obtain pulsewidth modulation (PWM) timings for a dodecagonal voltage SV structure using only sampled reference voltages. In addition to this, a carrier-based method for obtaining the PWM timings for a general N-level dodecagonal structure is proposed in this paper for the first time. The algorithm outputs the triangle information and the PWM timing values which can be set as the compare values for any carrier-based hardware PWM module to obtain SV PWM like switching sequences. The proposed method eliminates the need for angle estimation, computation of modulation indices, and iterative search algorithms that are typical in multilevel dodecagonal SV systems. The proposed PWM scheme was implemented on a five-level dodecagonal SV structure. Exhaustive simulation and experimental results for steady-state and transient conditions are presented to validate the proposed method.
Resumo:
This paper investigates possible reduction of pulsating torque in open-loop and vector-controlled induction motor drives through deployment of certain advanced bus-clamping pulsewidth modulation (ABCPWM) method. Toward this goal, a simple and machine-independent method is proposed to analyze the torque harmonic spectrum of a voltage source inverter fed induction motor, operated with any real-time pulsewidth modulation (PWM) method. The analytically evaluated torque harmonic spectra, pertaining to conventional space vector PWM (CSVPWM), bus-clamping PWM (BCPWM), and ABCPWM, are validated through simulation and experimental results. Theoretical and experimental studies bring out the superiority of the ABCPWM in terms of torque harmonics over CSVPWM and BCPWM. The magnitude of the dominant torque harmonic with the ABCPWM scheme is shown to be significantly lower than that with CSVPWM, over a wide range of speed. The rms torque ripple (i.e., total rms value of all harmonic torques) is lower with ABCPWM than with BCPWM over the entire range of speed.
Resumo:
XX1 CUIEET - Congreso Universitario de Innovación Educativa en las Enseñanzas Técnicas, Valencia, 2013.
Resumo:
The paper presents a vector model for a Brushless Doubly-Fed Machine (BDFM). The BDFM has 4 and 8 pole stator windings and a nested-loop rotor cage. The rotor cage has six nests equally spaced around the circumference and each nest comprises three loops. All the rotor loops are short circuited via a common end-ring at one end. The vector model is derived based on the electrical equations of the machine and appropriate vector transformations. In contrast to the stator, there is no three phase circuit in the rotor. Therefore, the vector transformations suitable for three phase circuits can not be utilised for the rotor circuit. A new vector transformation is employed for the rotor circuit quantities. The approach presented in this paper can be extended for a BDFM with any stator poles combination and any number of loops per nest. Simulation results from the model implemented in Simulink are presented. © 2008 IEEE.
Resumo:
The paper presents the vector model of the Brushless Doubly-Fed Machine (BDFM) in the rotor flux oriented reference frame. The rotor flux oriented reference frame is well known in the standard AC machines analysis and control. Similar benefits can be sought by employing this method for the BDFM The vector model is implemented in MATLAB/SIVIULINK to simulate the BDFM dynamic performance under different operating conditions. The predictions from the vector model are compared to those from the coupled circuit model in simulation. The results are shown for the cascade mode of operation. © 2008 IEEE.
Resumo:
The paper presents a novel vector control structure for the Brushless Doubly-Fed Machine (BDFM) which is derived based on the machine synchronous operation. In fact, the synchronous operation of the BDFM provides an efficient approach for determining the required reference angle in the machine vector control structure. The utilization of such reference angle makes the vector control structure presented in this paper different from and, in fact, more effective than the existing rotor flux and stator flux orientation schemes proposed for the machine. The results of implementing the vector control scheme in simulations confirm the effectiveness of the proposed approach for the BDFM control. © 2010 IEEE.