983 resultados para Industrial automation, Programmable logic controllers.
Resumo:
Hyperspectral instruments have been incorporated in satellite missions, providing data of high spectral resolution of the Earth. This data can be used in remote sensing applications, such as, target detection, hazard prevention, and monitoring oil spills, among others. In most of these applications, one of the requirements of paramount importance is the ability to give real-time or near real-time response. Recently, onboard processing systems have emerged, in order to overcome the huge amount of data to transfer from the satellite to the ground station, and thus, avoiding delays between hyperspectral image acquisition and its interpretation. For this purpose, compact reconfigurable hardware modules, such as field programmable gate arrays (FPGAs) are widely used. This paper proposes a parallel FPGA-based architecture for endmember’s signature extraction. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data sets collected by the NASA’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite mining district in Nevada. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems, opening new perspectives for onboard hyperspectral image processing.
Resumo:
Advances in FPGA technology and higher processing capabilities requirements have pushed to the emerge of All Programmable Systems-on-Chip, which incorporate a hard designed processing system and a programmable logic that enable the development of specialized computer systems for a wide range of practical applications, including data and signal processing, high performance computing, embedded systems, among many others. To give place to an infrastructure that is capable of using the benefits of such a reconfigurable system, the main goal of the thesis is to implement an infrastructure composed of hardware, software and network resources, that incorporates the necessary services for the operation, management and interface of peripherals, that coompose the basic building blocks for the execution of applications. The project will be developed using a chip from the Zynq-7000 All Programmable Systems-on-Chip family.
Resumo:
A utilização de sistemas embutidos distribuídos em diversas áreas como a robótica, automação industrial e aviónica tem vindo a generalizar-se no decorrer dos últimos anos. Este tipo de sistemas são compostos por vários nós, geralmente designados por sistemas embutidos. Estes nós encontram-se interligados através de uma infra-estrutura de comunicação de forma a possibilitar a troca de informação entre eles de maneira a concretizar um objetivo comum. Por norma os sistemas embutidos distribuídos apresentam requisitos temporais bastante exigentes. A tecnologia Ethernet e os protocolos de comunicação, com propriedades de tempo real, desenvolvidos para esta não conseguem associar de uma forma eficaz os requisitos temporais das aplicações de tempo real aos requisitos Quality of Service (QoS) dos diferentes tipos de tráfego. O switch Hard Real-Time Ethernet Switching (HaRTES) foi desenvolvido e implementado com o objetivo de solucionar estes problemas devido às suas capacidades como a sincronização de fluxos diferentes e gestão de diferentes tipos de tráfego. Esta dissertação apresenta a adaptação de um sistemas físico de modo a possibilitar a demonstração do correto funcionamento do sistema de comunicação, que será desenvolvido e implementado, utilizando um switch HaRTES como o elemento responsável pela troca de informação na rede entre os nós. O desempenho da arquitetura de rede desenvolvida será também testada e avaliada.
Resumo:
The philosophy of minimalism in robotics promotes gaining an understanding of sensing and computational requirements for solving a task. This minimalist approach lies in contrast to the common practice of first taking an existing sensory motor system, and only afterwards determining how to apply the robotic system to the task. While it may seem convenient to simply apply existing hardware systems to the task at hand, this design philosophy often proves to be wasteful in terms of energy consumption and cost, along with unnecessary complexity and decreased reliability. While impressive in terms of their versatility, complex robots such as the PR2 (which cost hundreds of thousands of dollars) are impractical for many common applications. Instead, if a specific task is required, sensing and computational requirements can be determined specific to that task, and a clever hardware implementation can be built to accomplish the task. Since this minimalist hardware would be designed around accomplishing the specified task, significant reductions in hardware complexity can be obtained. This can lead to huge advantages in battery life, cost, and reliability. Even if cost is of no concern, battery life is often a limiting factor in many applications. Thus, a minimalist hardware system is critical in achieving the system requirements. In this thesis, we will discuss an implementation of a counting, tracking, and actuation system as it relates to ergodic bodies to illustrate a minimalist design methodology.
Resumo:
The aims of this thesis were evaluation the type of wave channel, wave current, and effect of some parameters on them and identification and comparison between types of wave maker in laboratory situations. In this study, designing and making of two dimension channels (flume) and wave maker for experiment son the marine buoy, marine building and energy conversion systems were also investigated. In current research, the physical relation between pump and pumpage and the designing of current making in flume were evaluated. The related calculation for steel building, channels beside glasses and also equations of wave maker plate movement, power of motor and absorb wave(co astal slope) were calculated. In continue of this study, the servo motor was designed and applied for moving of wave maker’s plate. One Ball Screw Leaner was used for having better movement mechanisms of equipment and convert of the around movement to linear movement. The Programmable Logic Controller (PLC) was also used for control of wave maker system. The studies were explained type of ocean energies and energy conversion systems. In another part of this research, the systems of energy resistance in special way of Oscillating Water Column (OWC) were explained and one sample model was designed and applied in hydrolic channel at the Sheikh Bahaii building in Azad University, Science and Research Branch. The dimensions of designed flume was considered at 16 1.98 0. 57 m which had ability to provide regular waves as well as irregular waves with little changing on the control system. The ability of making waves was evaluated in our designed channel and the results were showed that all of the calculation in designed flume was correct. The mean of error between our results and theory calculation was conducted 7%, which was showed the well result in this situation. With evaluating of designed OWC model and considering of changes in the some part of system, one bigger sample of this model can be used for designing the energy conversion system model. The obtained results showed that the best form for chamber in exit position of system, were zero degree (0) in angle for moving below part, forty and five (45) degree in front wall of system and the moving forward of front wall keep in two times of height of wave.
Resumo:
Esta dissertação desenvolve uma plataforma de controlo interactiva para edifícios inteligentes através de um sistema SCADA (Supervisory Control And Data Acquisition). Este sistema SCADA integra diferentes tipos de informações provenientes das várias tecnologias presentes em edifícios modernos (controlo da ventilação, temperatura, iluminação, etc.). A estratégia de controlo desenvolvida implementa um controlador em cascada hierárquica onde os "loops" interiores são executados pelos PLC's locais (Programmable Logic Controller), e o "loop" exterior é gerido pelo sistema SCADA centralizado, que interage com a rede local de PLC's. Nesta dissertação é implementado um controlador preditivo na plataforma SCADA centralizada. São apresentados testes efectuados para o controlo da temperatura e luminosidade de salas com uma grande área. O controlador preditivo desenvolvido tenta optimizar a satisfação dos utilizadores, com base nas preferências introduzidas em várias interfaces distribuídas, sujeito às restrições de minimização do desperdício de energia. De forma a executar o controlador preditivo na plataforma SCADA foi desenvolvido um canal de comunicação para permitir a comunicação entre a aplicação SCADA e a aplicação MATLAB, onde o controlador preditivo é executado. ABSTRACT: This dissertation develops an operational control platform for intelligent buildings using a SCADA system (Supervisory Control And Data Acquisition). This SCADA system integrates different types of information coming from the several technologies present in modem buildings (control of ventilation, temperature, illumination, etc.). The developed control strategy implements a hierarchical cascade controller where inner loops are performed by local PLCs (Programmable Logic Controller), and the outer loop is managed by the centralized SCADA system, which interacts with the entire local PLC network. ln this dissertation a Predictive Controller is implemented at the centralized SCADA platform. Tests applied to the control of temperature and luminosity in hugearea rooms are presented. The developed Predictive Controller tries to optimize the satisfaction of user explicit preferences coming from several distributed user-interfaces, subjected to the constraints of energy waste minimization. ln order to run the Predictive Controller at the SCADA platform a communication channel was developed to allow communication between the SCADA application and the MATLAB application where the Predictive Controller runs.
Resumo:
The artificial lifting of oil is needed when the pressure of the reservoir is not high enough so that the fluid contained in it can reach the surface spontaneously. Thus the increase in energy supplies artificial or additional fluid integral to the well to come to the surface. The rod pump is the artificial lift method most used in the world and the dynamometer card (surface and down-hole) is the best tool for the analysis of a well equipped with such method. A computational method using Artificial Neural Networks MLP was and developed using pre-established patterns, based on its geometry, the downhole card are used for training the network and then the network provides the knowledge for classification of new cards, allows the fails diagnose in the system and operation conditions of the lifting system. These routines could be integrated to a supervisory system that collects the cards to be analyzed
Resumo:
The petrochemical industry has as objective obtain, from crude oil, some products with a higher commercial value and a bigger industrial utility for energy purposes. These industrial processes are complex, commonly operating with large production volume and in restricted operation conditions. The operation control in optimized and stable conditions is important to keep obtained products quality and the industrial plant safety. Currently, industrial network has been attained evidence when there is a need to make the process control in a distributed way. The Foundation Fieldbus protocol for industrial network, for its interoperability feature and its user interface organized in simple configuration blocks, has great notoriety among industrial automation network group. This present work puts together some benefits brought by industrial network technology to petrochemical industrial processes inherent complexity. For this, a dynamic reconfiguration system for intelligent strategies (artificial neural networks, for example) based on the protocol user application layer is proposed which might allow different applications use in a particular process, without operators intervention and with necessary guarantees for the proper plant functioning
Resumo:
In the operational context of industrial processes, alarm, by definition, is a warning to the operator that an action with limited time to run is required, while the event is a change of state information, which does not require action by the operator, therefore should not be advertised, and only stored for analysis of maintenance, incidents and used for signaling / monitoring (EEMUA, 2007). However, alarms and events are often confused and improperly configured similarly by developers of automation systems. This practice results in a high amount of pseudo-alarms during the operation of industrial processes. The high number of alarms is a major obstacle to improving operational efficiency, making it difficult to identify problems and increasing the time to respond to abnormalities. The main consequences of this scenario are the increased risk to personal safety, facilities, environment deterioration and loss of production. The aim of this paper is to present a philosophy for setting up a system of supervision and control, developed with the aim of reducing the amount of pseudo-alarms and increase reliability of the information that the system provides. A real case study was conducted in the automation system of the offshore production of hydrocarbons from Petrobras in Rio Grande do Norte, in order to validate the application of this new methodology. The work followed the premises of the tool presented in ISA SP18.2. 2009, called "life cycle alarm . After the implementation of methodology there was a significant reduction in the number of alarms
Resumo:
The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL
Resumo:
This paper is about a PhD thesis and includes the study and analysis of the performance of an onshore wind energy conversion system. First, mathematical models of a variable speed wind turbine with pitch control are studied, followed by the study of different controller types such as integer-order controllers, fractional-order controllers, fuzzy logic controllers, adaptive controllers and predictive controllers and the study of a supervisor based on finite state machines is also studied. The controllers are included in the lower level of a hierarchical structure composed by two levels whose objective is to control the electric output power around the rated power. The supervisor included at the higher level is based on finite state machines whose objective is to analyze the operational states according to the wind speed. The studied mathematical models are integrated into computer simulations for the wind energy conversion system and the obtained numerical results allow for the performance assessment of the system connected to the electric grid. The wind energy conversion system is composed by a variable speed wind turbine, a mechanical transmission system described by a two mass drive train, a gearbox, a doubly fed induction generator rotor and by a two level converter.
Resumo:
The technological enhancement of industrial automation and manufacturing is stricty connected to the innovations of communication technologies. The main impact of the last century is due to the introduction of FieldBus systems. Indeed, they have been fundamental for the lowest levels of the automation hierarchy. Besides factory automation, many processes nowadays would not be feasible without Fieldbus based networks. Indeed, these systems are employed in a large variety of application areas from energy distribution to in-vehicle networking but also in rail-way applications and avionics. In the following document, the main activities executed during the internship in I.M.A. S.p.A. are reported. The objective of the thesis is to develop an EtherCAT (Ethernet Fieldbus) slave integrated with peripherals for motion control applications. The slave is created by exploiting a micro-controller of Renesas Electronics called RX72M. Since, for the specific application the MCU lacks of several components needed for motion control, external devices are employed for developing the project.
Resumo:
Tehoelektoniikkalaitteella tarkoitetaan ohjaus- ja säätöjärjestelmää, jolla sähköä muokataan saatavilla olevasta muodosta haluttuun uuteen muotoon ja samalla hallitaan sähköisen tehon virtausta lähteestä käyttökohteeseen. Tämä siis eroaa signaalielektroniikasta, jossa sähköllä tyypillisesti siirretään tietoa hyödyntäen eri tiloja. Tehoelektroniikkalaitteita vertailtaessa katsotaan yleensä niiden luotettavuutta, kokoa, tehokkuutta, säätötarkkuutta ja tietysti hintaa. Tyypillisiä tehoelektroniikkalaitteita ovat taajuudenmuuttajat, UPS (Uninterruptible Power Supply) -laitteet, hitsauskoneet, induktiokuumentimet sekä erilaiset teholähteet. Perinteisesti näiden laitteiden ohjaus toteutetaan käyttäen mikroprosessoreja, ASIC- (Application Specific Integrated Circuit) tai IC (Intergrated Circuit) -piirejä sekä analogisia säätimiä. Tässä tutkimuksessa on analysoitu FPGA (Field Programmable Gate Array) -piirien soveltuvuutta tehoelektroniikan ohjaukseen. FPGA-piirien rakenne muodostuu erilaisista loogisista elementeistä ja niiden välisistä yhdysjohdoista.Loogiset elementit ovat porttipiirejä ja kiikkuja. Yhdysjohdot ja loogiset elementit ovat piirissä kiinteitä eikä koostumusta tai lukumäärää voi jälkikäteen muuttaa. Ohjelmoitavuus syntyy elementtien välisistä liitännöistä. Piirissä on lukuisia, jopa miljoonia kytkimiä, joiden asento voidaan asettaa. Siten piirin peruselementeistä voidaan muodostaa lukematon määrä erilaisia toiminnallisia kokonaisuuksia. FPGA-piirejä on pitkään käytetty kommunikointialan tuotteissa ja siksi niiden kehitys on viime vuosina ollut nopeaa. Samalla hinnat ovat pudonneet. Tästä johtuen FPGA-piiristä on tullut kiinnostava vaihtoehto myös tehoelektroniikkalaitteiden ohjaukseen. Väitöstyössä FPGA-piirien käytön soveltuvuutta on tutkittu käyttäen kahta vaativaa ja erilaista käytännön tehoelektroniikkalaitetta: taajuudenmuuttajaa ja hitsauskonetta. Molempiin testikohteisiin rakennettiin alan suomalaisten teollisuusyritysten kanssa soveltuvat prototyypit,joiden ohjauselektroniikka muutettiin FPGA-pohjaiseksi. Lisäksi kehitettiin tätä uutta tekniikkaa hyödyntävät uudentyyppiset ohjausmenetelmät. Prototyyppien toimivuutta verrattiin vastaaviin perinteisillä menetelmillä ohjattuihin kaupallisiin tuotteisiin ja havaittiin FPGA-piirien mahdollistaman rinnakkaisen laskennantuomat edut molempien tehoelektroniikkalaitteiden toimivuudessa. Työssä on myösesitetty uusia menetelmiä ja työkaluja FPGA-pohjaisen säätöjärjestelmän kehitykseen ja testaukseen. Esitetyillä menetelmillä tuotteiden kehitys saadaan mahdollisimman nopeaksi ja tehokkaaksi. Lisäksi työssä on kehitetty FPGA:n sisäinen ohjaus- ja kommunikointiväylärakenne, joka palvelee tehoelektroniikkalaitteiden ohjaussovelluksia. Uusi kommunikointirakenne edistää lisäksi jo tehtyjen osajärjestelmien uudelleen käytettävyyttä tulevissa sovelluksissa ja tuotesukupolvissa.
Resumo:
Control of an industrial robot is mainly a problem of dynamics. It includes non-linearities, uncertainties and external perturbations that should be considered in the design of control laws. In this work, two control strategies based on variable structure controllers (VSC) and a PD control algorithm are compared in relation to the tracking errors considering friction. The controller's performances are evaluated by adding an static friction model. Simulations and experimental results show it is possible to diminish tracking errors by using a model based friction compensation scheme. A SCARA robot is used to illustrate the conclusions of this paper.
Resumo:
The control, automation and optimization areas help to improve the processes used by industry. They contribute to a fast production line, improving the products quality and reducing the manufacturing costs. Didatic plants are good tools for research in these areas, providing a direct contact with some industrial equipaments. Given these capabilities, the main goal of this work is to model and control a didactic plant, which is a level and flow process control system with an industrial instrumentation. With a model it is possible to build a simulator for the plant that allows studies about its behaviour, without any of the real processes operational costs, like experiments with controllers. They can be tested several times before its application in a real process. Among the several types of controllers, it was used adaptive controllers, mainly the Direct Self-Tuning Regulators (DSTR) with Integral Action and the Gain Scheduling (GS). The DSTR was based on Pole-Placement design and use the Recursive Least Square to calculate the controller parameters. The characteristics of an adaptive system was very worth to guarantee a good performance when the controller was applied to the plant