840 resultados para Income forecasting
Resumo:
Planners in public and private institutions would like coherent forecasts of the components of age-specic mortality, such as causes of death. This has been di cult toachieve because the relative values of the forecast components often fail to behave ina way that is coherent with historical experience. In addition, when the group forecasts are combined the result is often incompatible with an all-groups forecast. It hasbeen shown that cause-specic mortality forecasts are pessimistic when compared withall-cause forecasts (Wilmoth, 1995). This paper abandons the conventional approachof using log mortality rates and forecasts the density of deaths in the life table. Sincethese values obey a unit sum constraint for both conventional single-decrement life tables (only one absorbing state) and multiple-decrement tables (more than one absorbingstate), they are intrinsically relative rather than absolute values across decrements aswell as ages. Using the methods of Compositional Data Analysis pioneered by Aitchison(1986), death densities are transformed into the real space so that the full range of multivariate statistics can be applied, then back-transformed to positive values so that theunit sum constraint is honoured. The structure of the best-known, single-decrementmortality-rate forecasting model, devised by Lee and Carter (1992), is expressed incompositional form and the results from the two models are compared. The compositional model is extended to a multiple-decrement form and used to forecast mortalityby cause of death for Japan
Resumo:
Different urban structures might affect the life history parameters of Aedes aegypti and, consequently, dengue transmission. Container productivity, probability of daily survival (PDS) and dispersal rates were estimated for mosquito populations in a high income neighbourhood of Rio de Janeiro. Results were contrasted with those previously found in a suburban district, as well as those recorded in a slum. After inspecting 1,041 premises, domestic drains and discarded plastic pots were identified as the most productive containers, collectively holding up to 80% of the total pupae. In addition, three cohorts of dust-marked Ae. aegypti females were released and recaptured daily using BGS-Traps, sticky ovitraps and backpack aspirators in 50 randomly selected houses; recapture rate ranged from 5-12.2% within cohorts. PDS was determined by two models and ranged from 0.607-0.704 (exponential model) and 0.659-0.721 (non-linear model), respectively. Mean distance travelled varied from 57-122 m, with a maximum dispersal of 263 m. Overall, lower infestation indexes and adult female survival were observed in the high income neighbourhood, suggesting a lower dengue transmission risk in comparison to the suburban area and the slum. Since results show that urban structure can influence mosquito biology, specific control strategies might be used in order to achieve cost-effective Ae. aegypti control.
Resumo:
Recently, White (2007) analysed the international inequalities in Ecological Footprints per capita (EF hereafter) based on a two-factor decomposition of an index from the Atkinson family (Atkinson (1970)). Specifically, this paper evaluated the separate role of environment intensity (EF/GDP) and average income as explanatory factors for these global inequalities. However, in addition to other comments on their appeal, this decomposition suffers from the serious limitation of the omission of the role exerted by probable factorial correlation (York et al. (2005)). This paper proposes, by way of an alternative, a decomposition of a conceptually similar index like Theil’s (Theil, 1967) which, in effect, permits clear decomposition in terms of the role of both factors plus an inter-factor correlation, in line with Duro and Padilla (2006). This decomposition might, in turn, be extended to group inequality components (Shorrocks, 1980), an analysis that cannot be conducted in the case of the Atkinson indices. The proposed methodology is implemented empirically with the aim of analysing the international inequalities in EF per capita for the 1980-2007 period and, amongst other results, we find that, indeed, the interactive component explains, to a significant extent, the apparent pattern of stability observed in overall international inequalities.
Resumo:
Species range shifts in response to climate and land use change are commonly forecasted with species distribution models based on species occurrence or abundance data. Although appealing, these models ignore the genetic structure of species, and the fact that different populations might respond in different ways because of adaptation to their environment. Here, we introduced ancestry distribution models, that is, statistical models of the spatial distribution of ancestry proportions, for forecasting intra-specific changes based on genetic admixture instead of species occurrence data. Using multi-locus genotypes and extensive geographic coverage of distribution data across the European Alps, we applied this approach to 20 alpine plant species considering a global increase in temperature from 0.25 to 4 °C. We forecasted the magnitudes of displacement of contact zones between plant populations potentially adapted to warmer environments and other populations. While a global trend of movement in a north-east direction was predicted, the magnitude of displacement was species-specific. For a temperature increase of 2 °C, contact zones were predicted to move by 92 km on average (minimum of 5 km, maximum of 212 km) and by 188 km for an increase of 4 °C (minimum of 11 km, maximum of 393 km). Intra-specific turnover-measuring the extent of change in global population genetic structure-was generally found to be moderate for 2 °C of temperature warming. For 4 °C of warming, however, the models indicated substantial intra-specific turnover for ten species. These results illustrate that, in spite of unavoidable simplifications, ancestry distribution models open new perspectives to forecast population genetic changes within species and complement more traditional distribution-based approaches.
Resumo:
Recently, White (2007) analysed the international inequalities in Ecological Footprints per capita (EF hereafter) based on a two-factor decomposition of an index from the Atkinson family (Atkinson (1970)). Specifically, this paper evaluated the separate role of environment intensity (EF/GDP) and average income as explanatory factors for these global inequalities. However, in addition to other comments on their appeal, this decomposition suffers from the serious limitation of the omission of the role exerted by probable factorial correlation (York et al. (2005)). This paper proposes, by way of an alternative, a decomposition of a conceptually similar index like Theil’s (Theil, 1967) which, in effect, permits clear decomposition in terms of the role of both factors plus an inter-factor correlation, in line with Duro and Padilla (2006). This decomposition might, in turn, be extended to group inequality components (Shorrocks, 1980), an analysis that cannot be conducted in the case of the Atkinson indices. The proposed methodology is implemented empirically with the aim of analysing the international inequalities in EF per capita for the 1980-2007 period and, amongst other results, we find that, indeed, the interactive component explains, to a significant extent, the apparent pattern of stability observed in overall international inequalities. Key words: ecological footprint; international environmental distribution; inequality decomposition
Resumo:
Les écosystèmes fournissent de nombreuses ressources et services écologiques qui sont utiles à la population humaine. La biodiversité est une composante essentielle des écosystèmes et maintient de nombreux services. Afin d'assurer la permanence des services écosystémiques, des mesures doivent être prises pour conserver la biodiversité. Dans ce but, l'acquisition d'informations détaillées sur la distribution de la biodiversité dans l'espace est essentielle. Les modèles de distribution d'espèces (SDMs) sont des modèles empiriques qui mettent en lien des observations de terrain (présences ou absences d'une espèce) avec des descripteurs de l'environnement, selon des courbes de réponses statistiques qui décrive la niche réalisée des espèces. Ces modèles fournissent des projections spatiales indiquant les lieux les plus favorables pour les espèces considérées. Le principal objectif de cette thèse est de fournir des projections plus réalistes de la distribution des espèces et des communautés en montagne pour le climat présent et futur en considérant non-seulement des variables abiotiques mais aussi biotiques. Les régions de montagne et l'écosystème alpin sont très sensibles aux changements globaux et en même temps assurent de nombreux services écosystémiques. Cette thèse est séparée en trois parties : (i) fournir une meilleure compréhension du rôle des interactions biotiques dans la distribution des espèces et l'assemblage des communautés en montagne (ouest des Alpes Suisses), (ii) permettre le développement d'une nouvelle approche pour modéliser la distribution spatiale de la biodiversité, (iii) fournir des projections plus réalistes de la distribution future des espèces ainsi que de la composition des communautés. En me focalisant sur les papillons, bourdons et plantes vasculaires, j'ai détecté des interactions biotiques importantes qui lient les espèces entre elles. J'ai également identifié la signature du filtre de l'environnement sur les communautés en haute altitude confirmant l'utilité des SDMs pour reproduire ce type de processus. A partir de ces études, j'ai contribué à l'amélioration méthodologique des SDMs dans le but de prédire les communautés en incluant les interactions biotiques et également les processus non-déterministes par une approche probabiliste. Cette approche permet de prédire non-seulement la distribution d'espèces individuelles, mais également celle de communautés dans leur entier en empilant les projections (S-SDMs). Finalement, j'ai utilisé cet outil pour prédire la distribution d'espèces et de communautés dans le passé et le futur. En particulier, j'ai modélisé la migration post-glaciaire de Trollius europaeus qui est à l'origine de la structure génétique intra-spécifique chez cette espèce et évalué les risques de perte face au changement climatique. Finalement, j'ai simulé la distribution des communautés de bourdons pour le 21e siècle afin d'évaluer les changements probables dans ce groupe important de pollinisateurs. La diversité fonctionnelle des bourdons va être altérée par la perte d'espèces spécialistes de haute altitude et ceci va influencer la pollinisation des plantes en haute altitude. - Ecosystems provide a multitude of resources and ecological services, which are useful to human. Biodiversity is an essential component of those ecosystems and guarantee many services. To assure the permanence of ecosystem services for future generation, measure should be applied to conserve biodiversity. For this purpose, the acquisition of detailed information on how biodiversity implicated in ecosystem function is distributed in space is essential. Species distribution models (SDMs) are empirical models relating field observations to environmental predictors based on statistically-derived response surfaces that fit the realized niche. These models result in spatial predictions indicating locations of the most suitable environment for the species and may potentially be applied to predict composition of communities and their functional properties. The main objective of this thesis was to provide more accurate projections of species and communities distribution under current and future climate in mountains by considering not solely abiotic but also biotic drivers of species distribution. Mountain areas and alpine ecosystems are considered as particularly sensitive to global changes and are also sources of essential ecosystem services. This thesis had three main goals: (i) a better ecological understanding of biotic interactions and how they shape the distribution of species and communities, (ii) the development of a novel approach to the spatial modeling of biodiversity, that can account for biotic interactions, and (iii) ecologically more realistic projections of future species distributions, of future composition and structure of communities. Focusing on butterfly and bumblebees in interaction with the vegetation, I detected important biotic interactions for species distribution and community composition of both plant and insects along environmental gradients. I identified the signature of environmental filtering processes at high elevation confirming the suitability of SDMs for reproducing patterns of filtering. Using those case-studies, I improved SDMs by incorporating biotic interaction and accounting for non-deterministic processes and uncertainty using a probabilistic based approach. I used improved modeling to forecast the distribution of species through the past and future climate changes. SDMs hindcasting allowed a better understanding of the spatial range dynamic of Trollius europaeus in Europe at the origin of the species intra-specific genetic diversity and identified the risk of loss of this genetic diversity caused by climate change. By simulating the future distribution of all bumblebee species in the western Swiss Alps under nine climate change scenarios for the 21st century, I found that the functional diversity of this pollinator guild will be largely affected by climate change through the loss of high elevation specialists. In turn, this will have important consequences on alpine plant pollination.
Resumo:
Monthly report from the Iowa Department of Human Services on Supplemental Security Income Program (SSI).
Resumo:
This adult cohort determined the incidence and patients' short-term outcomes of severe traumatic brain injury (sTBI) in Switzerland and age-related differences. A prospective cohort study with a follow-up at 14 days was performed. Patients ≥16 years of age sustaining sTBI and admitted to 1 of 11 trauma centers were included. sTBI was defined by an Abbreviated Injury Scale of the head (HAIS) score >3. The centers participated from 6 months to 3 years. The results are presented as percentages, medians, and interquartile ranges (IQRs). Subgroup analyses were performed for patients ≤65 years (younger) and >65 (elderly). sTBI was observed in 921 patients (median age, 55 years; IQR, 33-71); 683 (74.2%) were male. Females were older (median age, 67 years; IQR, 42-80) than males (52; IQR, 31-67; p<0.00001). The estimated incidence was 10.58 per 100,000 inhabitants per year. Blunt trauma was observed in 879 patients (95.4%) and multiple trauma in 283 (30.7%). Median Glasgow Coma Score (GCS) on the scene was 9 (IQR 4-14; 8 in younger, 12 in elderly) and in emergency departments 5 (IQR, 3-14; 3 in younger, 8 in elderly). Trauma mechanisms included the following: 484 patients with falls (52.6%; younger, 242 patients [50.0%]; elderly, 242 [50.0%]), 291 with road traffic accidents (31.6%; younger, 237 patients [81.4%]; elderly, 54 [18.6%]), and 146 with others (15.8%). Mortality was 30.2% (24.5% in younger, 40.9% in elderly). Median GCS at 14 days was 15 (IQR, 14-15) without differences among subgroups. Estimated incidence of sTBI in Switzerland was low, age was high, and mortality considerable. The elderly had higher initial GCS and a higher death rate, but high GCS at 14 days.
Resumo:
Monthly report from Iowa Department of Human Services on income.
Resumo:
Monthly report from the Iowa Department of Human Services on Supplemental Security Income Program (SSI).
Resumo:
Monthly report from the Iowa Department of Human Services on income.
Resumo:
Monthly report from Iowa Department of Human Services on income.
Resumo:
Monthly report about supplemental income produced by the Iowa Department of Human Services.
Resumo:
Monthly report about supplemental income produced by the Iowa Department of Human Services.
Resumo:
Monthly report about supplemental income produced by the Iowa Department of Human Services.