897 resultados para In situ Combustion. heavy oil. numerical simulation. reservoir modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Open Access funded by European Research Council Acknowledgements RB thanks GRADUS, Faculty 8.4. Natural Sciences, of Saarland University for partially funding his research visit to the University of California, Santa Barbara. RB would also thank to Dr. S. Khaderi for his help in setting up the model. He also thanks Dr. R. Hensel and Dr. N. Guimard for fruitful discussions and for their continuous support. EA acknowledges funding from the European Research Council under the European Union's Seventh Framework Program (FP/2007-2013)/ERC Advanced Grant no. 340929.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"UC-11."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Double Convected Pom-Pom model was recently introduced to circumvent some numerical and theological defects found in other formulations of the Pom-Pom concept. It is used here for the simulation of a benchmark problem: the flow in an abrupt planar contraction. The predictions are compared with birefringence measurements and show reasonable quantitative agreement with experimental data. A parametric study is also carried out with the aim of analysing the effect of the branching parameter on vortex dynamics and extrudate swell. The results show that the Double Convected Pom-Pom model (DCPP) model is able to discriminate between branched and linear macromolecular structures in accordance with experimental observations. In that respect, the role of the extensional properties in determining complex flow behaviour is stressed. Also, the ratio of the first normal stress difference to the shear stress appears to play a major role in die swell observation. For the time being, the role of the second normal stress difference appears to be less obvious to evaluate in this complex flow. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulent flow around a rotating circular cylinder has numerous applications including wall shear stress and mass-transfer measurement related to the corrosion studies. It is also of interest in the context of flow over convex surfaces where standard turbulence models perform poorly. The main purpose of this paper is to elucidate the basic turbulence mechanism around a rotating cylinder at low Reynolds numbers to provide a better understanding of flow fundamentals. Direct numerical simulation (DNS) has been performed in a reference frame rotating at constant angular velocity with the cylinder. The governing equations are discretized by using a finite-volume method. As for fully developed channel, pipe, and boundary layer flows, a laminar sublayer, buffer layer, and logarithmic outer region were observed. The level of mean velocity is lower in the buffer and outer regions but the logarithmic region still has a slope equal to the inverse of the von Karman constant. Instantaneous flow visualization revealed that the turbulence length scale typically decreases as the Reynolds number increases. Wavelet analysis provided some insight into the dependence of structural characteristics on wave number. The budget of the turbulent kinetic energy was computed and found to be similar to that in plane channel flow as well as in pipe and zero pressure gradient boundary layer flows. Coriolis effects show as an equivalent production for the azimuthal and radial velocity fluctuations leading to their ratio being lowered relative to similar nonrotating boundary layer flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate solids are complex redundant systems which consist of discrete particles. The interactions between the particles are complex and have been the subject of many theoretical and experimental investigations. Invetigations of particulate material have been restricted by the lack of quantitative information on the mechanisms occurring within an assembly. Laboratory experimentation is limited as information on the internal behaviour can only be inferred from measurements on the assembly boundary, or the use of intrusive measuring devices. In addition comparisons between test data are uncertain due to the difficulty in reproducing exact replicas of physical systems. Nevertheless, theoretical and technological advances require more detailed material information. However, numerical simulation affords access to information on every particle and hence the micro-mechanical behaviour within an assembly, and can replicate desired systems. To use a computer program to numerically simulate material behaviour accurately it is necessary to incorporte realistic interaction laws. This research programme used the finite difference simulation program `BALL', developed by Cundall (1971), which employed linear spring force-displacement laws. It was thus necessary to incorporate more realistic interaction laws. Therefore, this research programme was primarily concerned with the implementation of the normal force-displacement law of Hertz (1882) and the tangential force-displacement laws of Mindlin and Deresiewicz (1953). Within this thesis the contact mechanics theories employed in the program are developed and the adaptations which were necessary to incorporate these laws are detailed. Verification of the new contact force-displacement laws was achieved by simulating a quasi-static oblique contact and single particle oblique impact. Applications of the program to the simulation of large assemblies of particles is given, and the problems in undertaking quasi-static shear tests along with the results from two successful shear tests are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a numerical study on the transport of ions and ionic solution in human corneas and the corresponding influences on corneal hydration. The transport equations for each ionic species and ionic solution within the corneal stroma are derived based on the transport processes developed for electrolytic solutions, whereas the transport across epithelial and endothelial membranes is modelled by using phenomenological equations derived from the thermodynamics of irreversible processes. Numerical examples are provided for both human and rabbit corneas, from which some important features are highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofuels are promising renewable energy sources and can be derived from vegetable oil feedstocks. Although solid catalysts show great promise in plant oil triglyceride transesterification to biodiesel, the identification of active sites and operating surface nanostructures created during their processing is essential for the development of efficient heterogeneous catalysts. Systematic, direct observations of dynamic MgO nanocatalysts from a magnesium hydroxide-methoxide precursor were performed under controlled calcination conditions using novel in situ aberration corrected-transmission electron microscopy at the 0.1 nm level and quantified with catalytic reactivity and physico-chemical studies. Surface structural modifications and the evolution of extended atomic scale glide defects implicate coplanar anion vacancies in active sites in the transesterification of triglycerides to biodiesel. The linear correlation between surface defect density (and therefore polarisability) and activity affords a simple means to fine tune new, energy efficient nanocatalysts for biofuel synthesis. © 2009 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a mathematical model based on mass transfer in plant tissues is developed. The model takes into account the diffusion and convection of each constituent within the tissue. The driving force for the convection is assumed to be the gradient of hydrostatic pressure. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but taking into account the mass exchange across the cell membrane between the intracellular and extracellular volumes. The mass transfer results in not only the change of intracellular and extracellular volumes but also the shrinkage of whole tissue. The model allows us to quantitatively simulate the time evolution of intracellular and extracellular volumes, which was observed in histological sections under the microscope. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.