998 resultados para Immune stromal keratitis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic inflammation is now recognized as a major cause of malignant disease. In concert with various mechanisms (including DNA instability), hypoxia and activation of inflammatory bioactive lipid pathways and pro-inflammatory cytokines open the doorway to malignant transformation and proliferation, angiogenesis, and metastasis in many cancers. A balance between stimulatory and inhibitory signals regulates the immune response to cancer. These include inhibitory checkpoints that modulate the extent and duration of the immune response and may be activated by tumor cells. This contributes to immune resistance, especially against tumor antigen-specific T-cells. Targeting these checkpoints is an evolving approach to cancer immunotherapy, designed to foster an immune response. The current focus of these trials is on the programmed cell death protein 1 (PD-1) receptor and its ligands (PD-L1, PD-L2) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Researchers have developed anti-PD-1 and anti-PDL-1 antibodies that interfere with the ligands and receptor and allow the tumor cell to be recognized and attacked by tumor-infiltrating T-cells. These are currently being studied in lung cancer. Likewise, CTLA-4 inhibitors, which have had success treating advanced melanoma, are being studied in lung cancer with encouraging results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autoimmune diseases are more common in dogs than in humans and are already threatening the future of some highly predisposed dog breeds. Susceptibility to autoimmune diseases is controlled by environmental and genetic factors, especially the major histocompatibility complex (MHC) gene region. Dogs show a similar physiology, disease presentation and clinical response as humans, making them an excellent disease model for autoimmune diseases common to both species. The genetic background of canine autoimmune disorders is largely unknown, but recent annotation of the dog genome and subsequent development of new genomic tools offer a unique opportunity to map novel autoimmune genes in various breeds. Many autoimmune disorders show breed-specific enrichment, supporting a strong genetic background. Furthermore, the presence of hundreds of breeds as genetic isolates facilitates gene mapping in complex autoimmune disorders. Identification of novel predisposing genes establishes breeds as models and may reveal novel candidate genes for the corresponding human disorders. Genetic studies will eventually shed light on common biological functions and interactions between genes and the environment. This study aimed to identify genetic risk factors in various autoimmune disorders, including systemic lupus erythematosus (SLE)-related diseases, comprising immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis arteritis (SMRA) as well as Addison s disease (AD) in Nova Scotia Duck Tolling Retrievers (NSDTRs) and chronic superficial keratitis (CSK) in German Shepherd dogs (GSDs). We used two different approaches to identify genetic risk factors. Firstly, a candidate gene approach was applied to test the potential association of MHC class II, also known as a dog leukocyte antigen (DLA) in canine species. Secondly, a genome-wide association study (GWAS) was performed to identify novel risk loci for SLE-related disease and AD in NSDTRs. We identified DLA risk haplotypes for an IMRD subphenotype of SLE-related disease, AD and CSK, but not in SMRA, and show that the MHC class II gene region is a major genetic risk factor in canine autoimmune diseases. An elevated risk was found for IMRD in dogs that carried the DLA-DRB1*00601/DQA1*005011/DQB1*02001 haplotype (OR = 2.0, 99% CI = 1.03-3.95, p = 0.01) and for ANA-positive IMRD dogs (OR = 2.3, 99% CI = 1.07-5.04, p-value 0.007). We also found that DLA-DRB1*01502/DQA*00601/DQB1*02301 haplotype was significantly associated with AD in NSDTRs (OR = 2.1, CI = 1.0-4.4, P = 0.044) and the DLA-DRB1*01501/DQA1*00601/DQB1*00301 haplotype with the CSK in GSDs (OR=2.67, CI=1.17-6.44, p= 0.02). In addition, we found that homozygosity for the risk haplotype increases the risk for each disease phenotype and that an overall homozygosity for the DLA region predisposes to CSK and AD. Our results have enabled the development of genetic tests to improve breeding practices by avoiding the production of puppies homozygous for risk haplotypes. We also performed the first successful GWAS for a complex disease in dogs. With less than 100 cases and 100 controls, we identified five risk loci for SLE-related disease and AD and found strong candidate genes involved in a novel T-cell activation pathway. We show that an inbred dog population has fewer risk factors, but each of them has a stronger genetic risk. Ongoing studies aim to identify the causative mutations and bring new knowledge to help diagnostics, treatment and understanding of the aetiology of SLE-related diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immunity and host defence are rapidly evoked by structurally invariant molecular motifs common to microbial world, called pathogen associated molecular patterns (PAMPs). In addition to PAMPs, endogenous molecules released in response to inflammation and tissue damage, danger associated molecular patterns (DAMPs), are required for eliciting the response. The most important PAMPs of viruses are viral nucleic acids, their genome or its replication intermediates, whereas the identity and characteristics of virus infection-induced DAMPs are poorly defined. PAMPs and DAMPs engage a limited set of germ-line encoded pattern recognition receptors (PRRs) in immune and non-immune cells. Membrane-bound Toll-like receptors (TLRs), cytoplasmic retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptor (NLRs) are important PRRs involved in the recognition of the molecular signatures of viral infection, such as double-stranded ribonucleic acids (dsRNAs). Engagement of PRRs results in local and systemic innate immune responses which, when activated against viruses, evoke secretion of antiviral and pro-inflammatory cytokines, and programmed cell death i.e., apoptosis of the virus-infected cell. Macrophages are the central effector cells of innate immunity. They produce significant amounts of antiviral cytokines, called interferons (IFNs), and pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. IL-1β and IL-18 are synthesized as inactive precursors, pro-IL-1β and pro-IL-18, that are processed by caspase-1 in a cytoplasmic multiprotein complex, called the inflammasome. After processing, these cytokines are biologically active and will be secreted. The signals and secretory routes that activate inflammasomes and the secretion of IL-1β and IL-18 during virus infections are poorly characterized. The main goal of this thesis was to characterize influenza A virus-induced innate immune responses and host-virus interactions in human primary macrophages during an infection. Methodologically, various techniques of cellular and molecular biology, as well as proteomic tools combined with bioinformatics, were utilized. Overall, the thesis provides interesting insights into inflammatory and antiviral innate immune responses, and has characterized host-virus interactions during influenza A virus-infection in human primary macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-kappa B signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4(+) T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 0.9 kb double stranded cDNA of foot and mouth disease virus (FMDV) Type Asia 1, 63/72 was cloned in an expression vector, pUR222. A protein of 38 kd was produced by the clone which reacted with the antibodies raised against the virus. A 20 kd protein which may be derived from the 38 kd protein contained the antigenic epitopes of the protein VP1 of the virus. Injection of 10-20 micrograms of the partially purified 38 and 20 kd proteins or a lysate of cells containing 240 micrograms of the proteins elicited high titers of FMDV specific antibodies in guinea pigs and cattle respectively. Also, at these concentrations, the proteins protected 5 of 8 guinea pigs and 3 of 8 cattle when challenged with a virulent virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peste des petits ruminants (PPR) is an acute, highly contagious disease of small ruminants caused by a morbillivirus, Peste des petits ruminants virus (PPRV). The disease is prevalent in equatorial Africa, the Middle East, and the Indian subcontinent. A live attenuated vaccine is in use in some of the countries and has been shown to provide protection for at least three years against PPR. However, the live attenuated vaccine is not robust in terms of thermotolerance. As a step towards development of a heat stable subunit vaccine, we have expressed a hemagglutinin-neuraminidase (HN) protein of PPRV in peanut plants (Arachis hypogea) in a biologically active form, possessing neuraminidase activity. Importantly. HN protein expressed in peanut plants retained its immunodominant epitopes in their natural conformation. The immunogenicity of the plant derived HN protein was analyzed in sheep upon oral immunization. Virus neutralizing antibody responses were elicited upon oral immunization of sheep in the absence of any mucosal adjuvant. In addition, anti-PPRV-HN specific cell-mediated immune responses were also detected in mucosally immunized sheep. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Tuberculosis (TB) is an enduring health problem worldwide and the emerging threat of multidrug resistant (MDR) TB and extensively drug resistant (XDR) TB is of particular concern. A better understanding of biomarkers associated with TB will aid to guide the development of better targets for TB diagnosis and for the development of improved TB vaccines. Methods: Recombinant proteins (n = 7) and peptide pools (n = 14) from M. tuberculosis (M.tb) antigens associated with M.tb pathogenicity, modification of cell lipids or cellular metabolism, were used to compare T cell immune responses defined by IFN-gamma production using a whole blood assay (WBA) from i) patients with TB, ii) individuals recovered from TB and iii) individuals exposed to TB without evidence of clinical TB infection from Minsk, Belarus. Results: We identified differences in M.tb target peptide recognition between the test groups, i.e. a frequent recognition of antigens associated with lipid metabolism, e.g. cyclopropane fatty acyl phospholipid synthase. The pattern of peptide recognition was broader in blood from healthy individuals and those recovered from TB as compared to individuals suffering from pulmonary TB. Detection of biologically relevant M.tb targets was confirmed by staining for intracellular cytokines (IL-2, TNF-alpha and IFN-gamma) in T cells from non-human primates (NHPs) after BCG vaccination. Conclusions: PBMCs from healthy individuals and those recovered from TB recognized a broader spectrum of M.tb antigens as compared to patients with TB. The nature of the pattern recognition of a broad panel of M.tb antigens will devise better strategies to identify improved diagnostics gauging previous exposure to M.tb; it may also guide the development of improved TB-vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a method for the tuning the membership functions of a Mamdani type Fuzzy Logic Controller (FLC) using the Clonal Selection Algorithm(CSA) a model of the Artificial Immune System(AIS) paradigm is examined. FLC's are designed for two problems, firstly the linear cart centering problem and secondly the highly nonlinear inverted pendulum problem. The FLC tuned by AIS is compared with FLC tuned by GA. In order to check the robustness of the designed PLC's white noise was added to the system, further, the masses of the cart and the length and mass of the pendulum are changed. The PLC's were also tested in the presence of faulty rules. Finally, Kruskal Wallis test was performed to compare the performance of the GA and AIS. An insight into the algorithms are also given by studying the effect of the important parameters of GA and AIS.