972 resultados para Immobilization in polyethersulfone membranes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A monoclonal antibody CC92 (IgM), raised against a fraction of rat liver enriched in Golgi membranes, recognizes a novel Endo H-resistant 74-kD membrane glycoprotein (gp74). The bulk of gp74 is confined to the cis-Golgi network (CGN). Outside the Golgi gp74 is found in tubulovesicular structures and ER foci. In cells incubated at 37 degrees C the majority of gp74 is segregated from the intermediate compartment (IC) marker p58. However, in cells treated with organelle perturbants such as low temperature, BFA, and [AIF4]- the patterns of the two proteins become indistinguishable. Both proteins are retained in the Golgi complex at 20 degrees C and in the IC at 15 degrees C. Incubation of cells with BFA results in relocation of gp74 to p58 positive IC elements. [AIF4]- induces the redistribution of gp74 from the Golgi to p58-positive vesicles and does not retard the translocation of gp74 to IC elements in cells treated with BFA. Disruption of microtubules by nocodazol results in the rapid disappearance of the Golgi elements stained by gp74 and redistribution of the protein into vesicle-like structures. The responses of gp74 to cell perturbants are in sharp contrast with those of cis/middle and trans-Golgi resident proteins whose location is not affected by low temperatures or [AIF4]-, are translocated to the ER upon addition of BFA, and stay in slow disintegrating Golgi elements in cells treated with nocodazol. The results suggest that gp74 is an itinerant protein that resides most of the time in the CGN and cycles through the ER/IC following the pathway used by p58.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2 (cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2 inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4¿dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined action of nisin and lactacin F, two bacteriocins produced by lactic acid bacteria, is additive. In this report, the basis of this effect is examined. Channels formed by lactacin F were studied by experiments using planar lipid bilayers, and bactericidal effects were analyzed by flow cytometry. Lactacin F produced pores with a conductance of 1 ns in black lipid bilayers in 1 mM KClat 10 mV at 20°C. Pore formation was strongly dependent on voltage. Although lactacin F formed pores at very low potential (10 mV), the dependence was exponentialabov e 40 mV. The injuries induced by nisin and lactacin F in the membranes of Lactobacillus helveticus produced different flow cytometric profiles. Probably, when both bacteriocins are present, each acts separately; their cooperation may be due to an increase in the number of single membrane injuries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextrancharcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some modifications made at silanization step and the introduction of r-nitrobenzil bromide as an alternative reagent to the 8-hydroxiquinolein immobilization in silica gel were important points that brought up the reduction of synthesis time, efficency improvement of the immobilization process and better hydrolysis stabilization to the final materials. The caracterization was made by infrared spectroscopy, elementary analysis, complexing capacity and acid-base properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of biocatalysis is a promising field related to new technologies for organic synthesis. The development of immobilization techniques is very important due to the multiple or repetitive use of a single batch of enzymes and the ability to stop the reaction rapidly, at any stage, by removing the enzymes. In most cases, after immobilization, enzymes and microorganisms maintain or even increase their activity and stability. This work presents an overview of the common methods for lipase immobilization in polymers and applications of these systems to obtain compounds of synthetic interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphates have been used for lead immobilization in soils but the influence of soil type is not fully understood. In this work, lead chemical behaviour in two Brazilian latosoils (LA and LV) was studied via treatment with phosphates. The Pb concentration in Toxicity Characteristic Leaching Procedure (TCLP) solutions was decreased in all treatments. After treatment with H3PO4 the Pb concentration in the LA remained within the regulatory limit established by EPA. The ecotoxicological results with Daphnia pulex showed that this treatment reduced the lead bioavailability. Sequential extraction analyses showed that the lead was transferred from the most available to the residual fraction. Relevant decrease of soluble lead was observed in all phosphate treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3). Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6), the precursor of arachidonic acid (20:4n-6). 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor) and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholesterol (Chol) is an important lipid in cellular membranes functioning both as a membrane fluidity regulator, permeability regulator and co-factor for some membrane proteins, e.g. G-protein coupled receptors. It also participates in the formation of signaling platforms and gives the membrane more mechanical strenght to prevent osmotic lysis of the cell. The sterol structure is very conserved and already minor structural modifications can completely abolish its membrane functions. The right interaction with adjacent lipids and the preference of certain lipid structures over others are also key factors in determining the membrane properties of cholesterol. Because of the many important properties of cholesterol it is of value to understand the forces and structural properties that govern the membrane behavior of this sterol. In this thesis we have used established fluorescence spectroscopy methods to study the membrane behavior of both cholesterol and some of its 3β-modified analogs. Using several fluorescent probes we have established how the acyl chain order of the two main lipid species, sphingomyelin (SM) and phosphatidylcholine (PC) affect sterol partitioning as well as characterized the membrane properties of 3β-aminocholesterol and cholesteryl phosphocholine. We concluded that cholesterol prefers SM over PC at equal acyl chain order, indicating that other structural properties besides the acyl chain order are important for sphingomyelin-sterol interactions. A positive charge at the 3β position only caused minor changes in the sterol membrane behavior compared to cholesterol. A large phosphocholine head group caused a disruption in membrane packing together with other membrane lipids with large head groups, but was also able to form stable fluid bilayers together with ceramide and cholesterol. The Ability of the large head group sterol to form bilayers together with ceramide was further explored in the last paper where cholesteryl phosphocholine/ceramide (Chol-PC/Cer) complexes were successfully used to transfer ceramide into cultured cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we describe the early changes of the myelin sheath following surgical nerve crush. We used the freeze-fracture technique to better evaluate myelin alterations during an early stage of Wallerian degeneration. Rat sural nerves were experimentally crushed and animals were sacrificed by transcardiac perfusion 30 h after surgery. Segments of the nerves were processed for routine transmission electron microscopy and freeze-fracture techniques. Our results show that 30 h after the lesion there was asynchrony in the pattern of Wallerian degeneration, with different nerve fibers exhibiting variable degrees of axon disruption. This was observed by both techniques. Careful examination of several replicas revealed early changes in myelin membranes represented by vacuolization and splitting of consecutive lamellae, rearrangement of intramembranous particles and disappearance of paranodal transverse bands associated or not with retraction of paranodal myelin terminal loops from the axolemma. These alterations are compatible with a direct injury to the myelin sheath following nerve crush. The results are discussed in terms of a similar mechanism underlying both axon and myelin breakdown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työn tarkoituksena oli tutkia sellutehtaan alkalisen valkaisusuodoksen kierrätystä membraanitekniikkaa käyttäen. Alkalinen valkaisusuodos syntyy sellun valkaisun alkaliuuttovaiheessa ja se on ympäristölle haitallisin sellutehtaan jätevirroista. Suodoksen pH on korkea ja sen lämpötila voi olla suuri, jolloin sopivan membraanin löytäminen on haastavaa. Työssä vertailtiin 4 eri nanosuodatusmembraanin toimivuutta suodatuksessa. NF245, Desal-5 DK, NF270 ja NTR729HG membraaneja käytettiin tutkimuksessa. Suodatukset tehtiin 60 °C lämpötilassa useissa paineissa. Membraanit esikäsiteltiin paineistamalla sekä alkalisella pesulla. Suodatusnäytteistä saadut retentiot ligniinille, TOC:ille sekä johtokyvylle olivat lupaavia. Kaikilla kalvoilla ligniinin retentio oli yli 95 %. NTR729HG kalvoa lukuun ottamatta myös TOC retentiot olivat yli 90%. NTR729HG ja NF270 membraanit kärsivät suodoksen pH:sta sekä lämpötilasta, jolloin niiden retentiot johtokyvylle jäivät alhaisemmiksi, kuin muilla. NTR729HG membraanissa oli merkkejä foulaantumisesta, sekä kalvon hajoamisesta. Muissa membraaneissa oli suodatuksen aikana tapahtunut modifikaatiota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.