293 resultados para ISOMERIZATION
Resumo:
This study reports a systematic state-of-the-art characterization of new sulfur-chlorine species on the [H, S(2), Cl] potential energy surface. Coupled cluster theory singles and doubles with perturbative contributions of connected triples, using the series of correlation consistent basis sets with extrapolations to the complete basis set limit (CBS), were employed to quantify the energetic quantities involved in the isomerization processes on this surface. The structures and vibrational frequencies are unique for some species and represent the most accurate investigation to date. These molecules are potentially a new route of coupling the sulfur and chlorine chemistries in the atmosphere, and conditions of high concentration of H(2)S (HS) like in volcanic eruptions might contribute to their formation. Also an assessment of the MP2/CBS approach relative to CCSD(T)/CBS provides insights on the expected performance of MP2/CBS on the characterization of polysulfides, and also of more complex systems containing disulfide bridges. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Photochemical and photophysical properties of fac-[Re(CO)(3)(Clphen)(trans-L)](+) complexes, Clphen = 5-chloro-1,10-phenathroline and L = 1,2-bis(4-pyridyl)ethylene, bpe, or 4-styrylpyridine, stpy, were investigated to complement the understanding of intramolecular energy transfer process in tricarbonyl rhenium(I) complexes having an electron withdrawing group attached to polypyridyl ligands. These new compounds were synthesized, characterized and the photoisomerization quantum yields were accurately determined by (1)H NMR spectroscopy. The true quantum yields for fac-[Re(CO)(3)(Clphen) (trans-bpe)](+) were constant (Phi = 0.55) at all investigated irradiation wavelengths. However, for fac-[Re(CO)(3)(Clphen)(trans-stpy)](+), similar true quantum yields were observed only at higher energy irradiation (Phi(313 nm) = 0.53 and Phi(365 nm) = 0.57), but it decreased significantly at 404 nm (Phi = 0.41). These results indicated different deactivation pathways for the trans-stpy complex photoisomerization. Quantum yields decreased as the (3)IL(trans-L) and (3)MLCT(Re -> NN) excited states become closer and the behavior was discussed in terms of the excited state energy gaps. Additionally, luminescence properties of photoproducts, fac-[Re(CO)(3)(Clphen)(cis-L)](+), were also investigated in different environments to analyze the relative energy of the (3)MLCT(Re -> Clphen) excited state for each compound. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The fac-[Re(CO)(3)(Me(4)phen)(trans-L)](+) complexes, Me(4)phen = 3,4,7,8-tetramethyl-1,10-phenanthroline and L = 4-styrylpyridine, stpy, or 1,2-bis(4-pyridyl)ethylene, bpe, were synthesized and characterized by their spectroscopic, photochemical, and photophysical properties. The complexes exhibit trans-to-cis isomerization upon 313, 334, 365, and 404 nm irradiation, and the true quantum yields can be efficiently determined by absorption changes combined with (1)H NMR data. For fac-[Re(CO)(3)(Me(4)phen)(trans-bpe)](+) similar quantum yields were determined at all wavelengths investigated. However, a lower value (phi(true) = 0.35) was determined for fac-[Re(CO)(3)(Me(4)phen)(trans-stpy)](+) at 404 nm irradiation, which indicates different pathways for the photoisomerization process. The photoproducts, fac-[Re(CO)(3)(Me(4)phen)(cis-L)](+), exhibit luminescence at room temperature with two maxima ascribed to the (3)IL(Me4phen) and (3)MLCT(Re -> Me4phen) excited states. The luminescence properties were investigated in different media, and the behavior in glassy EPA at 77 K showed that the contribution of each emissive state is dependent on the excitation wavelength. The photochemical and photophysical behavior of the complexes were rationalized in terms of the energy gap of excited states and can be exploited in photoswitchable luminescent rigidity sensors.
Resumo:
Structural, vibrational, and energetic properties of new molecular species, HSI and HIS are investigated for the first time using a state-of-the-art theoretical approach. These molecules can be easily differentiated by their geometric parameters and vibrational spectra. HSI is much more stable, and a direct unimolecular isomerization is very unlikely. Kinetics estimates predict that only at low temperatures there is a possibility of isolating HIS. For HS-I, we estimate a bond dissociation energy of 46.25 kcal/mol, and a heat of formation at 298.15 K of 12.84 kcal/mol. For the H(2)S + I(2) -> HSI + HI reaction enthalpy, we found 8.40 kcal/ mol. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
CCSD(T) with a series of correlation consistent basis up to quadruple-zeta is used to investigate the structures, vibrational spectra, relative stability, heats of formation, and barrier to isomerization of S=SBr2 and BrSSBr. It represents the most accurate and detailed characterization of these molecules to date. We show that the frequency mode at 302 cm(-1), detected in various studies and assigned to impurities by some authors, and to the anti-symmetric SBr stretch in BrSSBr by others, thus in fact corresponds to the anti-symmetric SBr stretch in the elusive S=SBr2 species; it thus corroborates and complements an earlier partial IR spectra study attributable to S=SBr2. Including corrections for relativistic and core-valence correlation effects, we also predict 26.33 (12.74) kcal/mol for Delta H-f (298.15 K) of S=SBr2 (BrSSBr). For the S=SBr2 -> BrSSBr reaction, our best estimates for the Gibbs free energy and the enthalpy of the reaction at 298.15 K are -13.71 and -13.44 kcal/mol, respectively. For a value of Delta G(#) equal to 23.52 kcal/mol, we estimate a TST rate constant, at 298.15 K, of 3.57 x 10(-5) s(-1). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The question raised in the title has been answered by comparing the solvatochromism of two series of polarity probes, the lipophilicities of which were increased either by increasing the length of an alkyl group (R) attached to a fixed pyridine-based structure or through annelation (i.e., by fusing benzene rings onto a central pyridine-based structure). The following novel solvatochromic probes were synthesized: 2,6-dibromo-4-[(E)-2-(1-methylquinolinium-4-yl)ethenyl]-phenolate (MeQMBr(2)) and 2,6-dibromo-4-[(E)-2-(1-methyl-acridinium-4- yl) ethenyl)]phenolate (MeAMBr(2) The solvatochromic behavior of these probes, along with that of 2,6dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl]phenol-ate(MePMBr(2)) was analyzed in terms of increasing probe lipophilicity, through annelation. Values of the empirical solvent polarity scale [E(T)(MePMBr(2))] in kcalmol(-1) correlated linearly with ET(30), the corresponding values for the extensively employed probe 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (RB). On the other hand, the nonlinear correlations of ET(MeQMBr(2)) or ET(MeAMBr(2)) with E(T)(30) are described by second-order polynomials. Possible reasons for this behavior include: i) self-aggregation of the probe, ii) photoinduced cis/trans isomerization of the dye, and iii) probe structure- and solvent-dependent contributions of the quinonoid and zwitterionic limiting formulas to the ground and excited states of the probe. We show that mechanisms (i) and (ii) are not operative under the experimental conditions employed; experimental evidence (NMR) and theoretical calculations are presented to support the conjecture that the length of the central ethenylic bond in the dye increases in the order MeAMBr(2) > MeQMBr(2) > MePMBr(2), That is, the contribution of the zwitterionic limiting formula predominates for the latter probe, as is also the case for RB, this being the reason for the observed linear correlation between the ET(MePMBr2) and the ET(30) scales. The effect of increasing probe lipophilicity on solvatochromic behavior therefore depends on the strategy employed. Increasing the length of R affects solvatochromism much less than annelation, because the former structural change hardly perturbs the energy of the intramolecular charge-transfer transition responsible for solvatochromism. The thermo-solvatochromic behavior (effect of temperature on solvatochromism) of the three probes was studied in mixtures of water with propanol and/or with DMSO. The solvation model used explicitly considers the presence of three ""species"" in the system: bulk solution and probe solvation shell [namely, water (W), organic solvent (Solv)], and solvent-water hydrogen-bonded aggregate (Solv-W). For aqueous propanol, the probe is efficiently solvated by Solv-W; the strong interaction of DMSO with W drastically decreases the efficiency of Solv-W in solvating the probe, relative to its precursor solvents. Temperature increases resulted in desolvation of the probes, due to the concomitant reduction in the structured characters of the components of the binary mixtures.
Resumo:
Excited-state dynamics in fac-[Re(CO)(3)(Me(4)phen)(cis-L)](+) (Me(4)phen = 3,4,7,8-tetramethyl-1,10-phenanthroline, L = 4-styrylpyridine (stpy) or 1,2-bis(4-pyridyl)ethylene (bpe)) were investigated by steady-state and time-resolved techniques. A complex equilibrium among three closely lying excited states, 3IL(cis-L), (3)MLCT(Re -> me4phen), and (3)IL(Me4phen), has been established. Under UV irradiation, cis-to-trans isomerization of coordinated cis-L is observed with a quantum yield of 0.15 in acetonitrile solutions. This photoreaction competes with radiative decay from (3)MLCT(Re -> Me4phen) and (3)IL(Me4phen) excited states, leading to a decrease in the emission quantum yield relative to the nonisomerizable complex fac-[Re(CO)(3)(Me(4)phen)(bpa)](+) (bpa = 1,2-bis(4-pyridyl)ethane). From temperature-dependent time-resolved emission measurements in solution and in poly(methyl methacrylate) (PMMA) films, energy barriers (Delta E(a)) for interconversion between (3)MLCT(Re -> me4Phen) and (3)IL(Me4phen) emitting states were determined. For L = cis-stpy, Delta E(a) = 11 (920 cm(-1)) and 15 kJ mol(-1) (1254 cm(-1)) in 5:4 propionitrile/butyronitrile and PMMA, respectively. For L = cis-bpe, Delta E(a) = 13 kJ mol(-1) (1087 cm(-1)) in 5:4 propionitrile/butyronitrile. These energy barriers are sufficient to decrease the rate constant for internal conversion from higher-lying (3)IL(me4phen) state to (3)MLCT(Re -> Me4phen), k(i) congruent to 10(6) s(-1). The decrease in rate allows for the observation of intraligand phosphorescence, even in fluid medium at room temperature. Our results provide additional insight into the role of energy gap and excited-state dynamics on the photochemical and photophysical properties of Re(I) polypyridyl complexes.
Resumo:
In this work, the use of proton nuclear magnetic resonance, (1)H NMR, was fully described as a powerful tool to follow a photoreaction and to determine accurate quantum yields, so called true quantum yields (Phi(true)), when a reactant and photoproduct absorption overlap. For this, Phi(true) for the trans-cis photoisomerization process were determined for rhenium(I) polypyridyl complexes, fac-[Re(CO)(3)(NN)(trans-L)](+) (NN = 1,10-phenanthroline, phen, or 4,7-diphenyl-1,10-phenanthroline, ph(2)phen, and L = 1,2-bis(4-pyridyl) ethylene, bpe, or 4-styrylpyridine, stpy). The true values determined at 365 nm irradiation (e. g. Phi(NMR) = 0.80 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)) were much higher than those determined by absorption spectral changes (Phi(UV-Vis) = 0.39 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)). Phi(NMR) are more accurate in these cases due to the distinct proton signals of trans and cis-isomers, which allow the actual determination of each component concentration under given irradiation time. Nevertheless when the photoproduct or reactant contribution at the probe wavelength is negligible, one can determine Phi(true) by regular absorption spectral changes. For instance, Phi(313) nm for free ligand photoisomerization determined both by absorption and (1)H NMR variation are equal within the experimental error (bpe: Phi(UV-Vis) = 0.27, Phi(NMR) = 0.26; stpy: Phi(UV-Vis) = 0.49, Phi(NMR) = 0.49). Moreover, (1)H NMR data combined with electronic spectra allowed molar absorptivity determination of difficult to isolate cis-complexes. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
This work reports a state-of-the-art theoretical characterization of four new sulfur-bromine species and five transition states on the [H, S(2), Br] potential energy surface. Our highest level theoretical approach employed the method coupled cluster singles and doubles with perturbative contributions of connected triples, CCSD(T), along with the series of correlation-consistent basis sets and with extrapolation to the complete basis set (CBS) limit in the optimization of the geometrical parameters and to quantify the energetic quantities. The structural and vibrational frequencies here reported are unique and represent the most accurate investigation to date of these species. The global minimum corresponds to a skewed structure HSSBr with a disulfide bond; this is followed by a pyramidal-like structure, SSHBr, 18.85 kcal/mol above the minimum. Much higher in energy, we found another skewed structure, HSBrS (50.29 kcal/mol), with one S-Br dative-type bond, and another pyramidal-like one, HBrSS (109.80 kcal/mol), with two S-Br dative-type bonds. The interconversion of HSSBr into SSHBr can occur via a transfer of either the hydrogen or the bromine atom but involves a very high barrier of about 43 kcal/mol. These molecules are potentially a new route of coupling the sulfur and bromine chemistry in the atmosphere, and conditions of high concentration of H(2)S like in volcanic eruptions might contribute to their formation. We note that HSSBr can act as a reservoir molecule for the reaction between the radicals HSS and Br. Also, an assessment of the methods DFT/B3LYP/CBS and MP2/CBS relative to CCSD(T)/CBS provides insights on the expected performance of these methods on the characterization of polysulfides and also of more complex systems containing disulfide bridges.
Resumo:
Currently new polymeric materials have been developed to replace other of traditionally materials classes. The use of dyes allows to expand and to diversify the applications in the polymeric materials development. In this work the behavior and ability of azo dyes Disperse Blue 79 (DB79) and Disperse Red 73 (DR73) on poly(methyl methacrylate) (PMMA) were studied. Two types of mixtures were used in the production of masterbatches: 1) rheometer 2) solution. Processing by extrusion-blow molding of PMMA was carried out in order to evaluate the applications of polymeric films. Thermal analysis were performed by thermogravimetry to evaluate polymer and azo dyes thermal stability. Colorimetric analysis were obtained through monitoring the spectral variations associated with sys/trans/anti azo dyes isomerization process Colorimetric data were treated and evaluated in accordance to the color system RGB and CIEL*ab, by monitoring the color change as function of time. Mechanical properties, characterized by tensile tests, were evaluated and correlated with the presence and content of azo dyes in the samples. Analyses by scanning electronic microscopy (SEM) were performed on the surfaces of samples to check the azo dye dispersion after the mixing process. It was concluded that the production of PMMA/azo dyes is possible and feasible, and the mixtures produced had synergy of properties for use in various applications
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Density functional theory (DFT) calculations point out that the participation of water can effectively lower the barrier height for the isomerization process between hydrated oxide cation, MO(H2O)(+), and dihydroxide cation, M(OH)(2)(+), (M = V, Nb and Ta). The catalytic effect is achieved by a water-assisted mechanism in which water acts as proton donor and acceptor, via a transition structure corresponding to a six-membered ring. In the case of vanadium atom, the presence of two water molecules has been taken into account and the tautomerization becomes nearly barrierless, decreasing both the stability of the transition structures relative to intermediates and the depths of wells associated with the intermediates. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Due to environmental restrictions around the world, clean catalytic technology are of fundamental importance in the petrochemical industry and refineries. Creating the face of this a great interest in replacing the liquid acids for solid acids, so as molecular sieves have been extensively studied in reactions involving the acid catalysis to produce chemical substances with a high potential of quality. Being the activity of the catalysts involved in the reaction attributed to the acid character of them involved for the Lewis and Brönsted acid sites. Based on this context, this study aimed to prepare catalysts acids using a molecular sieve silicoalumino-phosphate (SAPO-11) synthesized in hidrotermical conditions and sulphated with sulphuric acid at different concentrations, using to it the method of controlled impregnating. The samples resulting from this process were characterized by x-ray difratometry (DRX), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TG-DTG) and determination of total acidity (by n-butilamin adsorption). The results show that the synthesis method used was efficient in the formation of AEL structure of SAPO-11 and when being incorporated the sulfate groups in this structure the acidity of the material was increased, pointing out that to very high concentrations of acid there is a trend of decrease the main peaks that form the structure. Finally they were tested catalytictly by the reaction model of conversion of m-xylene which showed favorable results of conversion for this catalyst, showing to be more selective of cracking products than isomerization, as expected, in order that for the o-xylene selectivity there was no positive change when to sulfate a sample of SAPO-11, while for light gases of C1-C4 this selectivity was remarkably observed
Resumo:
The catalytic processes play a vital role in the worldwide economy, a business that handles about US$ 13 billion per year because the value of products depends on the catalytic processes, including petroleum products, chemicals, pharmaceuticals, synthetic rubbers and plastics, among others. The zeolite ZSM-5 is used as catalyst for various reactions in the area petrochemical, petroleum refining and fine chemicals, especially the reactions of cracking, isomerization, alkylation, aromatization of olefins, among others. Many researchers have studied the hydrothermal synthesis of zeolite ZSM-5 free template and they obtained satisfactory results, so this study aims to evaluate the hydrothermal synthesis and the physicochemical properties of ZSM-5 with the presence and absence of template compared with commercial ZSM-5. The methods for hydrothermal synthesis of zeolite ZSM-5 are of scientific knowledge, providing the chemical composition required for the formation of zeolitic structure in the presence and absence of template. Samples of both zeolites ZSM-5 in protonic form were obtained by heat treatment and ion exchange, according to procedures reported in the literature. The sample of commercial ZSM-5 was acquired by the company Sentex Industrial Ltda. All samples were characterized by XRD, SEM, FTIR, TG / DTG / DSC, N2 adsorption and desorption and study of acidity by thermo-desorption of probe molecule (n-butylamine), in order to understand their physicochemical properties. The efficiency of the methods applied in this work and reported in the literature has been proved by well-defined structure of ZSM-5. According as the evaluation of physicochemical properties, zeolite ZSM-5 free template becomes promising for application in the refining processes or use as catalytic support, since its synthesis reduces environmental impacts and production costs
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)