532 resultados para INSECTICIDE
Resumo:
Pollinators face many challenges within agricultural systems due to landscape changes and intensification which can affect resource availability that can impact pollination services. This paper examines pigeon pea pollination and considers how landscape context and agricultural intensification in terms of pesticide use affects the abundance of bees characterized by species guilds on crops. The study was conducted on six paired farms across a gradient of habitat complexity based on the distance of each farm from adjacent semi-natural vegetation in Kibwezi Sub-county, Kenya. The study found that farms which do not use insecticides in farm management, but are in close proximity to natural habitat have greater bee guild abundance, but at further distances, overall abundance is reduced with or without insecticide use. At 1 km landscape radius, the complexity of habitats but not patch size had a positive impact on the abundance of cavity nesting bees and mason bees, which can be attributed to the interspersion of the small-holder farms with semi-natural habitats across the landscapes producing mosaics of heterogeneous habitats. The study revealed the strongest relationships between fruit set and bee abundance to be with the carpenter bee, social bee and solitary bee guilds, which are among the most abundant bees visiting pigeon pea flowers in this system. Our findings provide the foundation for conservation efforts by identifying which bee guilds pollinated pigeon peas. From this study, we suggest managing the floral and nesting resources that would best support the most abundant crop pollinators, and also reducing insecticide application to the crop.
Resumo:
Transgenic crops that contain Cry genes from Bacillus thuringiensis (Bt) have been adopted by farmers over the last 17 years. Unlike traditional broad spectrum chemical insecticides, Bt's toxicity spectrum is relatively narrow and selective, which may indirectly benefit secondary insects that may become important pests. The economic damage caused by the rise of secondary pests could offset some or all of the benefits associated with the use of Bt varieties. We develop a bioeconomic model to analyze the interactions between primary and secondary insect populations and the impact of different management options on insecticide use and economic impact over time. Results indicate that some of the benefits associated with the adoption of genetically engineered insect resistant crops may be eroded when taking into account ecological dynamics. It is suggested that secondary pests could easily become key insect pests requiring additional measures - such as insecticide applications or stacked traits – to keep their populations under the economic threshold.
Resumo:
Annual losses of cocoa in Ghana to mirids are significant. Therefore, accurate timing of insecticide application is critical to enhance yields. However, cocoa farmers often lack information on the expected mirid population for each season to enable them to optimise pesticide use. This study assessed farmers’ knowledge and perceptions of mirid control and their willingness to use forecasting systems informing them of expected mirid peaks and time of application of pesticides. A total of 280 farmers were interviewed in the Eastern and Ashanti regions of Ghana with a structured open and closed ended questionnaire. Most farmers (87%) considered mirids as the most important insect pest on cocoa with 47% of them attributing 30-40% annual crop loss to mirid damage. There was wide variation in the timing of insecticide application as a result of farmers using different sources of information to guide the start of application. The majority of farmers (56%) do not have access to information on the type, frequency and timing of insecticides to use. However, respondents who are members of farmer groups had better access to such information. Extension officers were the preferred channel for information transfer to farmers with 72% of farmers preferring them to other available methods of communication. Almost all the respondents (99%) saw the need for a comprehensive forecasting system to help farmers manage cocoa mirids. The importance of accurate timing for mirid control based on forecasted information to farmer groups and extension officers was discussed.
Resumo:
To investigate the kdr (knockdown resistance) resistance-associated gene mutation and determine its frequency in pyrethroid-resistant horn fly (Haematobia irritans) populations, a total of 1,804 horn flies of 37 different populations from all Brazilian regions (North, Northeast, Central-West, Southeast, and South) were molecular screened through polymerase chain reaction (PCR). The kdr gene was not detected in 87.08% of the flies. However, the gene was amplified in 12.92% of the flies, of which 11.70% were resistant heterozygous and 1.22% were resistant homozygous. Deviation from Hardy-Weinberg equilibrium (HWE) was found only in 1 ranch with an excess of heterozygous. When populations were grouped by region, three metapopulations showed significant deviations of HWE (Central-West population, South population and Southeast population). This indicates that populations are isolated one from another and kdr occurrence seems to be an independent effect probably reflecting the insecticide strategy used by each ranch. Although resistance to pyrethroids is disseminated throughout Brazil, only 48% of resistant populations had kdr flies, and the frequency of kdr individuals in each of these resistant populations was quite low. But this study shows that, with the apparent exception of the Northeast region, the kdr mechanism associated with pyrethroid resistance occurs all over Brazil.
Resumo:
Fipronil is a phenylpyrazolic insecticide that is widely used in agriculture and has been recently used to control the cattle tick, Rhipicephalus (Boophilus) microplus. Because of the serious problems associated with resistance to the available acaricides, this product has been used as an important alternative to control acaricide-resistant ticks. The objective of this work was to analyse the fipronil sensitivity of ticks that were collected from farms with a history of fipronil use by larval bioassays. A total of 11 Brazilian tick populations were studied: one population from Rio Grande do Sul, one population from Mato Grosso do Sul and nine populations from Sao Paulo. To validate the assays, susceptible reference strains, POA (Porto Alegre, Brazil) and Mozo (Dilave, Uruguay), and ticks from six different farms that never used fipronil were tested. The resistance of various tick populations to technical grade fipronil (95.3%) was primarily evaluated using the larvae immersion test (LIT) and the larval packet test (LPT), when a sufficient number of larvae was collected. Using the LIT, the resistance ratios (RR(50)) of the tick populations from Rio Grande do Sul and Mato Grosso do Sul were 14.9 and 2.6, respectively, and the populations derived from Sao Paulo had RR(50)s ranging from 2.5 to 6.9. Four populations were evaluated with the LPT, and two populations displayed lower RR(50), while other populations displayed higher RR(50) than those determined by the LIT. This article reports the first cases of fipronil resistance in Brazil and highlights the LIT as a more sensitive technique for the evaluation of fipronil resistance in R. (B) microplus ticks. We suggest the use of the LIT as an evaluation tool for monitoring fipronil resistance in the control programmes of R. (B) microplus. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Rhipicephalus (Boophilus) microplus is an important cattle pest in Uruguay, and the law regulates its control. It is resistant to organophosphates, synthetic pyrethroids and, as recently discovered, to fipronil. Resistance to macrocyclic lactones (MLs) and amitraz have not been documented; however, veterinarians and farmers have reported treatment failures. The objective of the present work was to study the susceptibility of cattle tick strains from different Uruguayan counties to ivermectin (IVM) and fipronil by using the Larval Immersion Test (LIT). The Mozo strain was used as the susceptible reference strain. From 2007 to 2009, twenty-eight tick populations were collected from different cattle farms with and without history of IVM or fipronil use. A probit analysis estimated dose-mortality regressions, lethal concentrations (LC), and confidence intervals. The resistance ratio (RR) was determined at the LC(50) and LC(90) estimates. To classify a tick population in relation to resistance, three categories based on a statistical analysis of LC and RR between field populations and Mozo strains were defined: susceptible (no differences), incipient resistance (differences and RR(50) < 2) and resistant (differences and RR(50) >= 2). Eighteen field populations were tested with IVM and five of them presented a RR(50) range between 1.35 and 1.98 and the LC(50/90), which is statistically different from the Mozo strain (incipient resistance). However, the RR(90) increases >= 2 in four of the populations, confirming that tick resistance to IVM is emergent. The low RR values obtained could be a result of a low frequency of treatments with IVM. Twenty-seven tick populations were tested with fipronil and six were diagnosed as resistant according to the LIT. Cross-resistance was not observed between fipronil and IVM on these tick populations. The current study presents different R. (B.) microplus populations with an incipient resistance to IVM, and indicates that the fipronil tick resistance is restricted to certain areas in Uruguay. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Methomyl (Lannate®) is an insecticide from the carbamate group, frequently used in pest control in various types of crops. This compound works inhibiting the activity of the enzyme acetylcholinesterase. The use of physicochemical and ecotoxicological analysis is the most efficient strategy for the correct characterization and control of residues of metomil. The main objectives of this study were to evaluate the acute toxicity of methomyl in 96 hours of exposure and, through a sublethal assay of 5 hours, to assess its effect on the activity of acetylcholinesterase present in brain and squeletic dorsal muscle of the Danio rerio fish. The results showed that the LC50-96 found to D. rerio was 3.4 mg/L and it was found through the average of four definitive tests. In vitro assays were used to test the inhibitory action of methomyl directly over soluble AChE, extracted from the squeletic dorsal muscle, with maximum inhibition of 68.57% to the insecticide concentrations of 0.2 mg/L. In sublethal tests with D. rerio, inhibitory effect of methomyl was found over the soluble form of AChE in the squeletic dorsal muscle, both in one and five hours of fish exposure to the insecticide. In both period, the average values of inhibition were around 61%. In the same condition, no significant inhibitory effect of methomyl soluble and membrane AChE of the D. rerio was observed in the 0.42, 0.85, 1.70 and 2.50 mg/L concentrations and in both times of fish exposure
Resumo:
Plodia interpunctella (Indian meal moth) is a cosmopolitan pest that attacks not only a wide range of stored grain as well other food products. Due to its economic importance several researches have focused in a method with ability to control this pest with few or no damage to the environment. The study of digestive enzymes inhibitors, lectins and chitin-binding proteins, has often been proposed as an alternative to reduce insect damage. In this study we report the major classes of digestive enzymes during larval growth in P. Interpunctella, being those proteinases actives at pH 9.5 and optimum temperature of 50 oC to both larvae of the 3rd instar and pre-pupal stage of development. In vitro and zymogram assays presented the effects of several inhibitors, such as SBTI, TLCK and PMSF to intestinal homogenate of 3rd instar larvae of 62%, 92% and 87% of inhibition and In pre-pupal stage of 87%, 62 % and 55% of inhibition, respectively. Zymograms showed inhibition of two low molecular masses protein bands by TLCK and that in presence of SBTI were retarded. These results are indicative of predominance of digestive serine proteinases in gut homogenate from Plodia interpunctella larvae. This serine proteinase was then used as a target to evaluate the effect of SBTI on larvae in in vivo assay. Effect of SBTI on mortality and larval mass was not observed at until 4% of concentration (w/w) in diets. Chitin, another target to insecticidal proteins, was observed by chemical method. Moreover, optic microscopy confirmed the presence of a peritrophic membrane. Established this target, in vivo effect of EvV, a chitin binding vicilin, evaluated during the larval development of P. interpunctella and was obtained a LD50 of 0,23% and WD50 of 0,27% to this protein. Mechanism of action was proposed through of the in vivo digestibility of EvV methodology. During the passage through the larval digestive tract was observed that EvV was susceptible to digestive enzymes and a reactive fragment, visualized by Western blotting, produced by digestion was recovered after dissociation of the peritrophic membrane. The bound of EvV to peritrophic membrane was confirmed by immunohystochemical assays that showed strong immunofluorescent signal of EvV-FITC binding and peritrophic membrane. These results are a indicative that vicilins could be utilized as potential insecticide to Plodia interpunctella and a control methods using EvV as bioinsecticide should be studied to reduce lost caused by storage insect pests
Resumo:
Thiamethoxam is a systemic insecticide from the neonicotinoid group, nitroguanidin family which affects the nicotinic receptor acetyl choline in the insect membrane, wounding the nervous system and causing the death of the insect. It was used with success in the control of initial pests of several crops. It was considered that thiamethoxam has a bioactivator effect, because in the absence of insects promoted increase in vigor, development and productivity of crops. This work was carried out to verify if thiamethoxam causes histological changes in sugarcane roots. In this work, it was used optical microscopy, images arrest, tissue biometrics and statistical analysis, in young roots of sugarcane RB 83 5486 after the treatments with different thiamethoxam concentrations. It was determined changes in histological structure of tissues 7, 14, 21 and 28 days after the treatments, establishing its effects on root plant anatomy. It was verified that thiamethoxam increased root cortex width, increasing the vascular cylinder and the metaxylem vessel elements number in the vascular tissue until 21 days after application.
Resumo:
Astilbin was isolated in high yield from Dimorphandra mollis, and its insecticidal and growth inhibiting activity by stomach ingestion were evaluated against Anticarsia gemmatalis and Spodoptera frugiperda. The insecticidal activity of astilbin, the weight reduction of the larval phase and the prolongation of the larval and pupal phases were verified for both species. Astilbin was identified on the base of its NMR, MS and physical data. (C) 2002 Society of Chemical Industry.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)