984 resultados para INDUCED PLANT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The human antimicrobial peptide cathelicidin (LL-37) possesses anti-inflammatory properties that may contribute to attenuating the inflammatory process associated with chronic periodontitis. Plant polyphenols, including those from cranberry and green tea, have been reported to reduce inflammatory cytokine secretion by host cells. In the present study, we hypothesized that A-type cranberry proanthocyanidins (AC-PACs) and green tea epigallocatechin-3-gallate (EGCG) act in synergy with LL-37 to reduce the secretion of inflammatory mediators by oral mucosal cells. Methods: A three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts treated with non-cytotoxic concentrations of AC-PACs (25 and 50 mg/ml), EGCG (1 and 5 mg/ml), and LL-37 (0.1 and 0.2 mM) individually and in combination (AC-PACs + LL-37 and EGCG + LL-37) were stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS). Multiplex ELISA assays were used to quantify the secretion of 54 host factors, including chemokines, cytokines, growth factors, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). Results: LL-37, AC-PACs, and EGCG, individually or in combination, had no effect on the regulation of MMP and TIMP secretion but inhibited the secretion of several cytokines. ACPACs and LL-37 acted in synergy to reduce the secretion of CXC-chemokine ligand 1 (GRO-a), granulocyte colony-stimulating factor (G-CSF), and interleukin-6 (IL-6), and had an additive effect on reducing the secretion of interleukin-8 (IL-8), interferon-g inducible protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) in response to LPS stimulation. EGCG and LL-37 acted in synergy to reduce the secretion of GRO-a, G-CSF, IL-6, IL-8, and IP-10, and had an additive effect on MCP-1 secretion. Conclusion: The combination of LL-37 and natural polyphenols from cranberry and green tea acted in synergy to reduce the secretion of several cytokines by an LPS-stimulated 3D coculture model of oral mucosal cells. Such combinations show promising results as potential adjunctive therapies for treating inflammatory periodontitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO) is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP) in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA) and proline and reduced pirogalol peroxidase (PG-POD) activity, but did not affect the activity of superoxide dismutase (SOD). When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory bowel disease (IBD) is a chronic, relapsing, idiopathic inflammation of the gastrointestinal tract. Clinical studies suggest that the initiation of IBD is multifactorial, involving genetics, the immune system and environmental factors, such as diet, drugs and stress. Pfaffia paniculata is an adaptogenic medicinal plant used in Brazilian folk medicine as an anti-stress agent. Thus, we hypothesised that the P. paniculata enhances the response of animals subjected to colonic inflammation. Our aim was to investigate the intestinal anti-inflammatory activity of P. paniculata in rats before or after induction of intestinal inflammation using trinitrobenzenesulfonic acid (TNBS). The animals were divided into groups that received the vehicle, prednisolone or P. paniculata extract daily starting 14days before or 7days after TNBS induction. At the end of the procedure, the animals were killed and their colons were assessed for the macroscopic damage score (MDS), extent of the lesion (EL) and weight/length ratio, myeloperoxidase (MPO) activity and glutathione (GSH), cytokines and C-reactive protein (CRP) levels. Histological evaluation and ultrastructural analysis of the colonic samples were performed. Treatment with the 200mg/kg dose on the curative schedule was able to reduce the MDS and the EL. In addition, MPO activity was reduced, GSH levels were maintained, and the levels of pro-inflammatory cytokines and CRP were decreased. In conclusion, the protective effect of P. paniculata was related to reduced oxidative stress and CRP colonic levels, and due to immunomodulatory activity as evidenced by reduced levels of IL-1β, INF-γ, TNF-α and IL-6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. Structured digital abstract XfDsbC and XfDsbC bind by x ray scattering (View Interaction: 1, 2) XfDsbC and XfDsbC bind by molecular sieving (View interaction) XfDsbC and XfDsbC bind by comigration in non denaturing gel electrophoresis (View interaction) XfDsbC and XfDsbC bind by cross-linking study (View Interaction: 1, 2) XfDsbC and XfDsbC bind by dynamic light scattering (View Interaction: 1, 2)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress-induced accumulation of reactive oxygen species (ROS), but the products of isoprene-ROS reactions in plants have not been detected. Using pyruvate-2-13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biotachemistryclimate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In sugarcane fields, colonization of the stalk by opportunistic fungi usually occurs after the caterpillar Diatraea saccharalis attacks the sugarcane plant. Plants respond to insect attack by inducing and accumulating a large set of defense proteins. Two homologues of a barley wound-inducible protein (BARWIN), sugarcane wound-inducible proteins SUGARWIN1 and SUGARWIN2, have been identified in sugarcane by an in silico analysis. Antifungal properties have been described for a number of BARWIN homologues. We report that a SUGARWIN:green fluorescent protein fusion protein is located in the endoplasmic reticulum and in the extracellular space of sugarcane plants. The induction of sugarwin transcripts occurs in response to mechanical wounding, D. saccharalis damage, and methyl jasmonate treatment. The accumulation of transcripts is late induced and is restricted to the site of the wound. Although the transcripts of sugarwin genes were strongly increased following insect attack, the protein itself did not show any effect on insect development; rather, it altered fungal morphology, leading to the apoptosis of the germlings. These results suggest that, in the course of evolution, sugarwin-encoding genes were recruited by sugarcane due to their antipathogenic activity. We rationalize that sugarcane is able to induce sugarwin gene expression in response to D. saccharalis feeding as a concerted plant response to the anticipated invasion by the fungi that typically penetrate the plant stalk after insect damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20 mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4 days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2[7-Amino-2-(2-furyl)[1,2,4] triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl) phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor. (C) 2012 Elsevier B. V. All rights reserved.