989 resultados para INDUCED GENERATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of mice with the immunomodulating agent, Corynebacterium parvum (C. parvum), was shown to result in a severe and long-lasting depression of splenic natural killer (NK) cell-mediated cytotoxicity 5-21 days post-inoculation. Because NK cells have been implicated in immunosurveillance against malignancy (due to their spontaneous occurrence and rapid reactivity to a variety of histological types of tumors), as well as in resistance to established tumors, this decreased activity was of particular concern, since this effect is contrary to that which would be considered therapeutically desirable in cancer treatment (i.e. a potentiation of antitumor effector functions, including NK cell activity, would be expected to lead to a more effective destruction of malignant cells). Therefore, an analysis of the mechanism of this decline of splenic NK cell activity in C.parvum treated mice was undertaken.^ From in vitro co-culturing experiments, it was found that low NK-responsive C. parvum splenocytes were capable of reducing the normally high-reactivity of cells from untreated syngeneic mice to YAC-1 lymphoma, suggesting the presence of NK-directed suppressor cells in C. parvum treated animals. This was further supported by the demonstration of normal levels of cytotoxicity in C. parvum splenocyte preparations following Ficoll-Hypaque separation, which coincided with removal of the NK-suppressive capabilities of these cells. The T cell nature of these regulatory cells was indicated by (1) the failure of C. parvum to cause a reduction of NK cell activity, or the generation of NK-directed suppressor cells in T cell-deficient athymic mice, (2) the removal of C. parvum-induced suppression by T cell-depleting fractionation procedures or treatments, and (3) demonstration of suppression of NK cell activity by T cell-enriched C. parvum splenocytes. These studies suggest, therefore, that the eventual reduction of suppression by T cell elimination and/or inhibition, may result in a promotion of the antitumor effectiveness of C. parvum due to the contribution of "freed" NK effector cell activity.^ However, the temporary suppression of NK cell activity induced by C. parvum (reactivity of treated mice returns to normal levels within 28 days after C. parvum injection), may in fact be favorable in some situations, e.g. in bone marrow transplantation cases, since NK cells have been suggested to play a role also in the process of bone marrow graft rejection.^ Therefore, the discriminate use of agents such as C. parvum may allow for the controlled regulation of NK cell activity suggested to be necessary for the optimalization of therapeutic regimens. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser pulses are largely used for processing and analysis of materials and in particular for nano-particle synthesis. This paper addresses fundamentals of the generation of nano-materials following specific thermodynamic paths of the irradiated material. Computer simulations using the hydro code MULTI and the SESAME equation of state have been performed to follow the dynamics of a target initially heated by a short laser pulse over a distance comparable to the metal skin depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies of the sediments of Lake Lucerne have shown that massive subaqueous mass movements affecting unconsolidated sediments on lateral slopes are a common process in this lake, and, in view of historical reports describing damaging waves on the lake, it was suggested that tsunamis generated by mass movements represent a considerable natural hazard on the lakeshores. Newly performed numerical simulations combining two-dimensional, depth-averaged models for mass-movement propagation and for tsunami generation, propagation and inunda- tion reproduce a number of reported tsunami effects. Four analysed mass-movement scenarios—three based on documented slope failures involving volumes of 5.5 to 20.8 9 106 m3—show peak wave heights of several metres and maximum runup of 6 to [10 m in the directly affected basins, while effects in neighbouring basins are less drastic. The tsunamis cause large-scale inundation over distances of several hundred metres on flat alluvial plains close to the mass-movement source areas. Basins at the ends of the lake experience regular water-level oscillations with characteristic periods of several minutes. The vulnerability of potentially affected areas has increased dramatically since the times of the damaging historical events, recommending a thorough evaluation of the hazard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autophagy has been demonstrated to have an essential function in several cellular hematopoietic differentiation processes, for example, the differentiation of reticulocytes. To investigate the role of autophagy in neutrophil granulopoiesis, we studied neutrophils lacking autophagy-related (Atg) 5, a gene encoding a protein essential for autophagosome formation. Using Cre-recombinase mediated gene deletion, Atg5-deficient neutrophils showed no evidence of abnormalities in morphology, granule protein content, apoptosis regulation, migration, or effector functions. In such mice, however, we observed an increased proliferation rate in the neutrophil precursor cells of the bone marrow as well as an accelerated process of neutrophil differentiation, resulting in an accumulation of mature neutrophils in the bone marrow, blood, spleen, and lymph nodes. To directly study the role of autophagy in neutrophils, we employed an in vitro model of differentiating neutrophils that allowed modulating the levels of ATG5 expression, or, alternatively, intervening pharmacologically with autophagy-regulating drugs. We could show that autophagic activity correlated inversely with the rate of neutrophil differentiation. Moreover, pharmacological inhibition of p38 MAPK or mTORC1 induced autophagy in neutrophilic precursor cells and blocked their differentiation, suggesting that autophagy is negatively controlled by the p38 MAPK-mTORC1 signaling pathway. On the other hand, we obtained no evidence for an involvement of the PI3K-AKT or ERK1/2 signaling pathways in the regulation of neutrophil differentiation. Taken together, these findings show that, in contrast to erythropoiesis, autophagy is not essential for neutrophil granulopoiesis, having instead a negative impact on the generation of neutrophils. Thus, autophagy and differentiation exhibit a reciprocal regulation by the p38-mTORC1 axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to UVB radiation induces local and systemic immune suppression, evidenced by inhibition of the contact hypersensitivity response (CHS). Epidermal dendritic cells, the primary antigen presenting cells responsible for the induction of CHS, are profoundly altered in phenotype and function by UVB exposure and possess UV-specific DNA damage upon migrating to skin-draining lymph nodes. Expression of the proapoptotic protein FasL has been demonstrated in both skin and lymph node cells following UVB exposure. Additionally, functional FasL expression has recently been demonstrated to be required in the phenomenon of UV-induced immune suppression. To test the hypothesis that FasL expression by DNA-damaged Langerhans cells migrating to the skin-draining lymph nodes is a crucial event in the generation of this phenomenon, mice were given a single 5KJ/m2 UV-B exposure and sensitized to 0.5% FITC through the exposed area. Dendritic cells (DC) harvested from skin-draining lymph nodes (DLN) 18 hours following sensitization by magnetic CD11c-conjugated microbeads expressed high levels of Iab, CD80 and CD86, DEC-205 and bore the FITC hapten, suggesting epidermal origin. Radioimmunoassay of UV-specific DNA damage showed that DC contained the vast majority of cyclobutane pyrimidine dimers (CPDs) found in the DLN after UVB and exhibited increased FasL mRNA expression, a result which correlated with greatly increased FasL-mediated cytotoxicity. The ability of DCs to transfer sensitization to naïve hosts was lost following UVB exposure, a phenomenon which required DC FasL expression, and was completely reversed by cutaneous DNA repair. Collectively, these results demonstrate the central importance of DNA damage-induced FasL expression on migrating dendritic cells in mediating UV-induced suppression of contact hypersensitivity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer and neuroblastoma in clinical trials. 4HPR induces growth inhibition and apoptosis in various cancer cells including head and neck squamous cell carcinoma (HNSCC) cells. 4HPR induces apoptosis by several mechanisms including increasing reactive oxygen species (ROS), or inducing mitochondrial permeability transition (MPT). 4HPR has also been shown to modulate the level of different proteins by transcriptional activation or posttranslational modification in various cellular contexts. However, the mechanism of its action is not fully elucidated. In this study, we explored the mechanism of 4HPR-induced apoptosis in HNSCC cells. ^ First, we identified proteins modulated by 4HPR by using proteomics approaches including: Powerblot western array and 2-dimensional polyacrylamide gel electrophoresis. We found that 4HPR modulated the levels of several proteins including c-Jun. Further analysis has shown that 4HPR induced activation of Activator Protein 1 (AP-1) components, c-Jun and ATF-2. We also found that 4HPR increased the level of Heat shock protein (Hsp) 70 and phosphorylation of Hsp27. ^ Second, we found that 4HPR induced prolonged activation of JNK, p38/MAPK and extracellular signal-regulated kinase (ERK). We also demonstrated that the activation of these kinases is required for 4HPR-induced apoptosis. JNK inhibitor SP600125 and siRNA against JNK1 and JNK2 suppressed, while overexpression of JNK1 enhanced 4HPR-induced apoptosis. p38/MAPK inhibitor PD169316 and MEK1/2 inhibitor PD98059 also suppressed 4HPR-induced apoptosis. We also demonstrated that activation of JNK, p38/MAPK and ERK is triggered by ROS generation induced by 4HPR. We also found that translation inhibitor, cycloheximide, suppressed 4HPR-induced apoptosis through inhibition of 4HPR-induced events (e.g. ROS generation, cytochrome c release, JNK activation and suppression of Akt). We also demonstrated that MPT is involved in 4HPR-induced apoptosis. ^ Third, we demonstrated the presence of NADPH oxidase in HNSCC 2B cells. We also found that 4HPR increased the level of the p67phox, a subunit of NADPH oxidase which participates in ROS production and apoptosis induced by 4HPR. ^ The novel insight into the mechanism by which 4HPR induces apoptosis can be used to improve design of future clinical studies with this synthetic retinoid in combination with specific MAPK modulators. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer, and neuroblastoma. 4HPR induces apoptosis in various cancer cells and production of reactive oxygen species (ROS) has been suggested as a possible cause underlying these effects. However, the mechanisms governing these effects by 4HPR are not fully elucidated. In this study, we explored the mechanisms of 4HPR-induced ROS increase and apoptosis in human cancer cells. ^ First, we identified genes modulated by 4HPR using oligonucleotide gene expression arrays and found that they fall into specific functional canonical pathways and gene networks using Ingenuity Pathways Analysis®. Further analysis has shown that 4HPR induced up-regulation of Endoplasmic Reticulum (ER)-related genes such as Heat shock proteins 70 and 90 and the transcriptional factor, GADD153. These findings were validated using quantitative real-time PCR. ^ Second, we found that 4HPR induced extensive ER stress evidenced by dilation of the ER and endoribonuclease-mediated splicing and activation of the transcriptional factor, XBP-1. In addition, 4HPR induced the up-regulation of various ER stress-related genes and their protein products, as well as cleavage and activation of the ER specific Caspase-4. Concomitantly with XBP-1 splicing, all of these effects were dependent on ROS generation by 4HPR. Furthermore, chemical inhibition and RNA interference studies revealed a novel pro-apoptotic role for HSP70/A1A in 4HPR-mediated apoptosis. ^ Third, we observed rapid activation of the small GTPase Rac by 4HPR which was upstream of ROS generation. Inhibition of Rac activity or silencing of its expression by RNA interference inhibited ROS generation and apoptosis induction by 4HPR. siRNA targeting PAK1 and expression of a dominant negative Rac, decreased 4HPR-mediated ROS generation, while expression of a constitutive active Rac increased basal and 4HPR-induced ROS generation and PARP cleavage. Furthermore, metastatic cancer cells exhibited higher Rac activation, ROS generation, and cell growth inhibition due to 4HPR exposure compared to their primary cancer cell counterparts. ^ These findings provide novel insights into 4HPR-mediated ROS generation and apoptosis induction and support the use of ROS inducing agents such as 4HPR against metastatic cancer cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of these studies was to determine the role of suppressor factors (TsF) in the regulation of immune responses by ultraviolet radiation-induced suppressor T lymphocytes (Ts). The Ts were induced following epicutaneous sensitization with contact allergens to an unirradiated site on mice irradiated five days earlier with 40 kJ/m$\sp2$ UVB (280-320 nm) radiation. The spleens of such mice contain afferent, hapten-specific, Thy-1$\sp+$, Lyt-1$\sp+$,2$\sp-$ Ts that suppress in vivo contact hypersensitivity (CHS) and antibody responses and the in vitro generation of cytotoxic T lymphocytes (CTL). Four approaches were used to determine the role of TsF. First, lysates produced from sonically-disrupted Ts were injected i.v. into normal animals; they inhibited CHS in vivo in a nonspecific manner. The lysates suppressed the induction and elicitation of CHS, and they inhibited the in vitro generation of CTL. Lysates prepared from splenocytes obtained from unirradiated mice or UV-irradiated, unsensitized mice failed to inhibit either response. Second, supernatants from cultures containing Ts, normal syngeneic responder lymphocytes, and hapten-modified stimulator cells were injected i.v. into normal recipients. They inhibited the induction of CHS and did so in a hapten-specific manner. Cellular and kinetic requirements were observed for the generation of suppressive activity. Splenocytes from mice treated with Ts supernatants suppressed CHS when transferred into normal animals. The supernatants also suppressed the in vitro generation of specific CTL. Third, the TsF-specific B16G monoclonal antibody was tested for its ability to modulate the effects of UV radiation in vivo. The i.v. injection of B16G into UV-irradiated mice reduced the suppression of CHS. Splenocytes of B16G-treated mice transferred into normal recipients, and they suppressed CHS, indicating that the Ts were not depleted. Fourth, B16G was used to isolate a putative TsF by antibody immunoadsorbance. When the B16G-bound fraction was eluted and injected i.v. into normal animals, it suppressed CHS and represented a 900-fold enrichment of activity over the starting material, based on specific activity. By SDS-PAGE, the B16G-bound material contained nondisulfide-linked 45- and 50-kDa components. These results suggest that TsF may play an immunoregulatory role in CHS. The isolation of a UV radiation-induced TsF lends credence to the involvement of such molecules. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study addresses the questions of whether the frequency of generation and in vivo cross-reactivity of highly immunogenic tumor clones induced in a single parental murine fibrosarcoma cell line MCA-F is more closely related to the agent used to induce the Imm$\sp{+}$ clone or whether these characteristics are independent of the agents used. These questions were addressed by treating the parental tumor cell line MCA-F with UV-B radiation (UV-B), 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), or 5-aza-2$\sp\prime$-deoxycytidine (5-azaCdR). The frequency of Imm$\sp{+}$ variant generation was similarly high for the three different agents, suggesting that the frequency of Imm$\sp{+}$ generation was related more closely to the cell line than to the inducing agent used. Cross-reactivity was tested with two Imm$\sp{+}$ clones from each treatment group in a modified immunoprotection assay that selectively engendered antivariant, but not antiparental immunity. Under these conditions each clone, except one, immunized against itself. The MNNG-induced clones engendered stronger antivariant immunity but a weaker variant cross-reactive immunity could also be detected.^ This study also characterized the lymphocyte populations responsible for antivariant and antiparental immunity in vivo. Using the local adoptive transfer assay (LATA) and antibody plus complement depletion of T-cell subsets, we showed that immunity induced by the Imm$\sp{+}$ variants against the parent MCA-F was transferred by the Thy1.2$\sp{+}$, L3T4a$\sp{+}$, Lyt2.1$\sp{-}$ (CD4$\sp{+}$) population, without an apparent contribution by Thy1.2$\sp{+}$, L3T4a$\sp{-}$, Lyt2.1$\sp{+}$ (CD8$\sp{+}$) cells. A role for Lyt2.1$\sp{+}$T lymphocytes in antivariant, but not antiparent immunity was supported by the results of LATA and CTL assays. Immunization with low numbers of viable Imm$\sp{+}$ cells, or with high numbers of non viable Imm$\sp{+}$ cells engendered only antivariant immunity without parental cross-protection. The associative recognition of parental antigens and variant neoantigens resulting in strong antiparent immunity was investigated using somatic cells hybrids of Imm$\sp{+}$ variants of MCA-F and an antigenically distinct tumor MCA-D. An unexpected result of these latter experiments was the expression of a unique tumor-specific antigen by the hybrid cells. These studies demonstrate that the parental tumor-specific antigen and the variant neoantigen must be coexpressed on the cell surface to engender parental cross-protective immunity. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cutaneous exposure to ultraviolet-B radiation (UVR) results in the suppression of cell-mediated immune responses such as contact hypersensitivity (CHS) and delayed-type hypersensitivity (DTH). This modulation of immune responses is mediated by local or systemic mechanisms, both of which are associated with the generation of antigen-specific suppressor T lymphocytes (Ts). UV-induced Ts have been shown to be CD3+CD4+CD8 − T cells that control multiple immunological pathways. However, the precise mechanisms involved in the generation and function of these immunoregulatory cells remain unclear. We investigated the cellular basis for the generation of UV-induced Ts lymphocytes in both local and systemic models of immune suppression, and further examined the pleiotrophic function of these immunoregulatory cells. ^ We used Thy1.1 and Thy1.2 congenic mice in a draining lymph node (DLN) cell transfer model to analyze the role played by epidermal Langerhans cells in the generation of Ts cells. We demonstrate that T cells tightly adhered to antigen-presenting cells (APC) from UV-irradiated skin are the direct progenitors of UV-induced Ts lymphocytes. Our studies also reveal that UV-induced DNA-damage in the form of cyclobutyl pyrimidine dimers (CPD) in the epidermal APC is crucial for the altered maturation of these adherent T cells into Ts. ^ We used TCR transgenic mice in an adoptive transfer model and physically tracked the antigen-specific clones during immune responses in unirradiated versus UV-irradiated mice. We demonstrate that UV-induced Ts and effector TDTH cells share the same epitope specificity, indicating that both cell populations arise from the same clonal progenitors. UVR also causes profound changes in the localization and proliferation of antigen-specific T cells during an immune response. Antigen-specific T cells are not detectable in the DLNs of UV-irradiated mice after 3 days post-immunization, but are found in abundance in the spleen. In contrast, these clones continue to be found in the DLNs and spleens of normal animals several days post-immunization. Our studies also reveal that a Th2 cytokine environment is essential for the generation of Ts in UV-irradiated mice. ^ The third part of our study examined the pleiotrophic nature of UV-induced Ts. We used a model for the induction of both cellular and humoral responses to human gamma-globulin (HGG) to demonstrate that UV-induced Ts lymphocytes can suppress DTH as well as antibody responses. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skin cancer is the most prevalent form of neoplasia, with over one million newcases diagnosed this year. UV radiation is a ubiquitous environmental agent that induces skin cancer. In addition to its carcinogenic effect, UV radiation also suppresses cell-mediated immune responses. This immune suppression is not only observed at the site of irradiation, but UV radiation also induces systemic immune suppression. Since UV radiation has a limited ability to penetrate the skin, the question of the mechanism of this systemic immune suppression arises. A number of studies have suggested that UV radiation induce systemic effects through the production of immunoregulatory cytokines, such as IL-4 and IL-10. These cytokines affect the immune response by altering systemic antigen presentation, specifically by suppressing the activation of Th1 cells while allowing the activation of Th2 cells. Because IL-12 is an important regulator of Th1 cell activation, we tested the hypothesis that administration of IL-12 could overcome UV-induced immune suppression. ^ The studies presented here are divided into dime specific aims. In the first specific aim, the ability of IL-12 to overcome UV-induced immune suppression was examined. IL-12 could overcome UV-induced immune suppression as well as prevent the generation of and neutralize the activity of preformed suppressor cells induced by UV radiation. In the second specific aim, the mechanism by which IL-12 overcomes UV-induced immune suppression was examined. IL-12 overcame UV-induced immune suppression by blocking the production of immunoregulatory cytokines such as IL-4, IL-10 and TNF-α. In the third specific aim, the effect of UV radiation on antigen presentation was investigated. UV radiation was found to decrease the production of biologically active IL-12. In addition, UV also increased the production of IL-12p40 homodimer, an antagonist of IL-12p70 heterodimer. This result suggests that IL-12 may have a dual role in the immune suppression induced by, UV radiation. On one hand the biologically active IL-12p70 heterodimer blocks UV-induced immune suppression. In contrast, IL-12p40 homodimer may mediate the suppressive effect of UV radiation. This paradox indicates that IL-12 may have a greater regulatory role in the immune response than was previously suspected. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The linear instability and breakdown to turbulence induced by an isolated roughness element in a boundary layer at Mach 2:5, over an isothermal flat plate with laminar adiabatic wall temperature, have been analysed by means of direct numerical simulations, aided by spatial BiGlobal and three-dimensional parabolized (PSE-3D) stability analyses. It is important to understand transition in this flow regime since the process can be slower than in incompressible flow and is crucial to prediction of local heat loads on next-generation flight vehicles. The results show that the roughness element, with a height of the order of the boundary layer displacement thickness, generates a highly unstable wake, which is composed of a low-velocity streak surrounded by a three-dimensional high-shear layer and is able to sustain the rapid growth of a number of instability modes. The most unstable of these modes are associated with varicose or sinuous deformations of the low-velocity streak; they are a consequence of the instability developing in the three-dimensional shear layer as a whole (the varicose mode) or in the lateral shear layers (the sinuous mode). The most unstable wake mode is of the varicose type and grows on average 17% faster tan the most unstable sinuous mode and 30 times faster than the most unstable boundary layer mode occurring in the absence of a roughness element. Due to the high growthrates registered in the presence of the roughness element, an amplification factor of N D 9 is reached within 50 roughness heights from the roughness trailing edge. The independently performed Navier–Stokes, spatial BiGlobal and PSE-3D stability results are in excellent agreement with each other, validating the use of simplified theories for roughness-induced transition involving wake instabilities. Following the linear stages of the laminar–turbulent transition process, the roll-up of the three-dimensional shear layer leads to the formation of a wedge of turbulence, which spreads laterally at a rate similar to that observed in the case of compressible turbulent spots for the same Mach number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crowd induced dynamic loading in large structures, such as gymnasiums or stadium, is usually modelled as a series of harmonic loads which are defined in terms of their Fourier coefficients. Different values of these coefficients that were obtained from full scale measurements can be found in codes. Recently, an alternative has been proposed, based on random generation of load time histories that take into account phase lag among individuals inside the crowd. This paper presents the testing done on a structure designed to be a gymnasium. Two series of dynamic test were performed on the gym slab. For the first test an electrodynamic shaker was placed at several locations and during the second one people located inside a marked area bounced and jumped guided by different metronome rates. A finite element model (FEM) is presented and a comparison of numerically predicted and experimentally observed vibration modes and frequencies has been used to assess its validity. The second group of measurements will be compared with predictions made using the FEM model and three alternatives for crowd induced load modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis se centra en la generación de ondas superficiales subarmónicas en fluidos sometidos a vibración forzada en el régimen gravitatorio capilar con líquidos de baja viscosidad. Tres problemas diferentes han sido estudiados: un contenedor rectangular con vibración horizontal, la misma geometría pero con una combinación de vibración vertical y horizontal y un obstáculo completamente sumergido vibrado verticalmente en un contenedor grande. Se deriva una ecuación de amplitud desde primeros principios para describir las ondas subarmónicas con forzamiento parámetrico inducido por la vibración. La ecuación es bidimensional mientras que el problema original es tridimensional y admite un forzamiento espacial no uniforme. Usando esta ecuación los tres sistemas han sido analizados, centrándose en calcular la amplitud crítica, la orientación de los patrones y el carácter temporal de los patrones espaciotemporales, que pueden ser estrictamente subarmónicos o cuasiperiodicos con una frecuencia de modulación temporal. La dependencia con los parámetros adimensionales también se considera. La teoría será comparada con los experimentos disponibles en la literatura. Abstract This thesis focus on the generation of subharmonic surface waves on fluids subject to forced vibration in the gravity-capillary regime with liquids of small viscosity. Three different problems have been considered: a rectangular container under horizontal vibration; the same geometry but under a combination of horizontal and vertical vibration; and a fully submerged vertically vibrated obstacle in a large container. An amplitude equation is derived from first principles that fairly precisely describes the subharmonic surfaces waves parametrically driven by vibration. That equation is two dimensional while the underlying problem is three-dimensional and permits spatially nonuniform forcing. Using this equation, the three systems have been analyzed, focusing on the calculation of the threshold amplitude, the pattern orientation, and the temporal character of the spatio-temporal patterns, which can be either strictly subharmonic or quasi-periodic, showing an additional modulation frequency. Dependence on the non-dimensional parameters is also considered. The theory is compared with the experiments available in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to exploit bacterial artificial chromosomes (BAC) as large antigen-capacity DNA vaccines (BAC-VAC) against complex pathogens, such as herpes simplex virus 1 (HSV-1). The 152-kbp HSV-1 genome recently has been cloned as an F-plasmid-based BAC in Escherichia coli (fHSV), which can efficiently produce infectious virus progeny upon transfection into mammalian cells. A safe modification of fHSV, fHSVΔpac, does not give rise to progeny virus because the signals necessary to package DNA into virions have been excluded. However, in mammalian cells fHSVΔpac DNA can still replicate, express the HSV-1 genes, cause cytotoxic effects, and produce virus-like particles. Because these functions mimic the lytic cycle of the HSV-1 infection, fHSVΔpac was expected to stimulate the immune system as efficiently as a modified live virus vaccine. To test this hypothesis, mice were immunized with fHSVΔpac DNA applied intradermally by gold-particle bombardment, and the immune responses were compared with those induced by infection with disabled infectious single cycle HSV-1. Immunization with either fHSVΔpac or disabled infectious single cycle HSV-1 induced the priming of HSV-1-specific cytotoxic T cells and the production of virus-specific antibodies and conferred protection against intracerebral injection of wild-type HSV-1 at a dose of 200 LD50. Protection probably was cell-mediated, as transfer of serum from immunized mice did not protect naive animals. We conclude that BAC-VACs per se, or in combination with genetic elements that support replicative amplification of the DNA in the cell nucleus, represent a useful new generation of DNA-based vaccination strategies for many viral and nonviral antigens.