995 resultados para II INFECTION
Resumo:
BACKGROUND Chronic HCV infection is a leading cause of liver-related morbidity globally. The innate and adaptive immune responses are thought to be important in determining viral outcomes. Polymorphisms associated with the IFNL3 (IL28B) gene are strongly associated with spontaneous clearance and treatment outcomes. OBJECTIVE This study investigates the importance of HLA genes in the context of genetic variation associated with the innate immune genes IFNL3 and KIR2DS3. DESIGN We assess the collective influence of HLA and innate immune genes on viral outcomes in an Irish cohort of women (n=319) who had been infected from a single source as well as a more heterogeneous cohort (Swiss Cohort, n=461). In the Irish cohort, a number of HLA alleles are associated with different outcomes, and the impact of IFNL3-linked polymorphisms is profound. RESULTS Logistic regression was performed on data from the Irish cohort, and indicates that the HLA-A*03 (OR 0.36 (0.15 to 0.89), p=0.027) -B*27 (OR 0.12 (0.03 to 0.45), p=<0.001), -DRB1*01:01 (OR 0.2 (0.07 to 0.61), p=0.005), -DRB1*04:01 (OR 0.31 (0.12 to 0.85, p=0.02) and the CC IFNL3 rs12979860 genotypes (OR 0.1 (0.04 to 0.23), p<0.001) are significantly associated with viral clearance. Furthermore, DQB1*02:01 (OR 4.2 (2.04 to 8.66), p=0.008), KIR2DS3 (OR 4.36 (1.62 to 11.74), p=0.004) and the rs12979860 IFNL3 'T' allele are associated with chronic infection. This study finds no interactive effect between IFNL3 and these Class I and II alleles in relation to viral clearance. There is a clear additive effect, however. Data from the Swiss cohort also confirms independent and additive effects of HLA Class I, II and IFNL3 genes in their prediction of viral outcome. CONCLUSIONS This data supports a critical role for the adaptive immune response in the control of HCV in concert with the innate immune response.
Resumo:
Aim. This study was focused on (i) detection of specific BVDV-antibodies within selected cattle farms, (ii) identification of persistently infected (PI) animals and (iii) genetic typing of selected BVDV isolates. Methods. RNA extraction, real-time polymerase chain reaction, ELISA technique, sequencing. Results. Specific BVDV-antibodies were detected in 713 of 1,059 analyzed samples (67.3 per cent). This number is in agreement with findings in many cattle herds around the world. However, the number of positive samples differed in the herds. While 57 samples out of 283 (20.1 per cent) were identified in the first herd, 400 out of 475 (84.2 per cent) and 256 out of 301 (85 per cent) animals were positive in the second and third herd. High number of animals with BVDV RNA was detected in all herds. The real-time PCR assay detected BVDV RNA in 5 of 1068 samples analyzed (0.5 per cent). 4 positive samples out of 490 (0.8 per cent) and 1 out of 301 (0.33 per cent) were found in the second and third herd. The genetic materials of BVDV were not found in the first herd. Data on the number of PI animals were in accord with serological findings in the cattle herds involved in our study. The genetic typing of viral isolates revealed that only BVDV, Type 1 viruses were present. The hylogenetic analysis confirmed two BVDV-1 subtypes, namely b and f and revealed that all 4 viruses from the second farm were typed as BVDV-1b and all of them were absolutely identical in 5’-UTR, but virus from the third farm was typed as BVDV-1f. Conclusion. Our results indicated that the BVDV infection is widespread in cattle herds in the eastern Ukraine, that requires further research and development of new approaches to improve the current situation.
Resumo:
BACKGROUND Treatment of retinopathy of prematurity (ROP) stage 3 plus with bevacizumab is still very controversial. We report the outcome of 6 eyes of 4 premature infants with ROP stage 3 plus disease treated with ranibizumab monotherapy. METHODS Six eyes of 4 premature infants with threshold ROP 3 plus disease in zone II, were treated with one intravitreal injection of 0.03 ml ranibizumab. No prior laser or other intravitreal therapy was done. Fundus examination was performed prior to the intervention and at each follow-up visit. Changes in various mean vital parameters one week post intervention compared to one week pre-intervention were assessed. RESULTS The gestational age (GA) of patient 1, 2, 3, and 4 at birth was 24 5/7, 24 5/7, 24 4/7, and 26 1/7 weeks, respectively. The birth weight was 500 grams, 450 grams, 665 grams, and 745 grams, respectively. The GA at the date of treatment ranged from 34 3/7 to 38 6/7 weeks. In one infant, upper air way infection was observed 2 days post injection of the second eye. Three eyes required paracentesis to reduce the intraocular pressure after injection and to restore central artery perfusion. After six months, all eyes showed complete retinal vascularisation without any signs of disease recurrence. CONCLUSIONS Treatment of ROP 3 plus disease with intravitreal ranibizumab was effective in all cases and should be considered for treatment. One infant developed an upper air way infection suspicious for nasopharyngitis, which might be a possible side effect of ranibizumab. Another frequent complication was intraocular pressure rise after injection. More patients with longer follow-up duration are mandatory to confirm the safety and efficacy of this treatment. TRIAL REGISTRATION NUMBER NCT02164604 ; Date of registration: 13.06.2014.
Resumo:
BACKGROUND The growth potential of the tumor-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly linked to the nature/function of the periparasitic host immune-mediated processes. We previously showed that Fibrinogen-like-protein 2 (FGL2), a novel CD4+CD25+ Treg effector molecule, was over-expressed in the liver of mice experimentally infected with E. multilocularis. However, little is known about its contribution to the control of this chronic helminth infection. METHODS/FINDINGS Key parameters for infection outcome in E. multilocularis-infected fgl2-/- (AE-fgl2-/-) and wild type (AE-WT) mice at 1 and 4 month(s) post-infection were (i) parasite load (i. e. wet weight of parasitic metacestode tissue), and (ii) parasite cell proliferation as assessed by determining E. multilocularis 14-3-3 gene expression levels. Serum FGL2 levels were measured by ELISA. Spleen cells cultured with ConA for 48h or with E. multilocularis Vesicle Fluid (VF) for 96h were analyzed ex-vivo and in-vitro. In addition, spleen cells from non-infected WT mice were cultured with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For Treg-immune-suppression-assays, purified CD4+CD25+ Treg suspensions were incubated with CD4+ effector T cells in the presence of ConA and irradiated spleen cells as APCs. Flow cytometry and qRT-PCR were used to assess Treg, Th17-, Th1-, Th2-type immune responses and maturation of dendritic cells. We showed that AE-fgl2-/- mice exhibited (as compared to AE-WT-animals) (a) a significantly lower parasite load with reduced proliferation activity, (b) an increased T cell proliferative response to ConA, (c) reduced Treg numbers and function, and (d) a persistent capacity of Th1 polarization and DC maturation. CONCLUSIONS FGL2 appears as one of the key players in immune regulatory processes favoring metacestode survival by promoting Treg cell activity and IL-17A production that contributes to FGL2-regulation. Prospectively, targeting FGL2 could be an option to develop an immunotherapy against AE and other chronic parasitic diseases.
Resumo:
A methicillin-resistant mecB-positive Macrococcus caseolyticus (strain KM45013) was isolated from the nares of a dog with rhinitis. It contained a novel 39-kb transposon-defective complete mecB-carrying staphylococcal cassette chromosome mec element (SCCmecKM45013). SCCmecKM45013 contained 49 coding sequences (CDSs), was integrated at the 3' end of the chromosomal orfX gene, and was delimited at both ends by imperfect direct repeats functioning as integration site sequences (ISSs). SCCmecKM45013 presented two discontinuous regions of homology (SCCmec coverage of 35%) to the chromosomal and transposon Tn6045-associated SCCmec-like element of M. caseolyticus JCSC7096: (i) the mec gene complex (98.8% identity) and (ii) the ccr-carrying segment (91.8% identity). The mec gene complex, located at the right junction of the cassette, also carried the β-lactamase gene blaZm (mecRm-mecIm-mecB-blaZm). SCCmecKM45013 contained two cassette chromosome recombinase genes, ccrAm2 and ccrBm2, which shared 94.3% and 96.6% DNA identity with those of the SCCmec-like element of JCSC7096 but shared less than 52% DNA identity with the staphylococcal ccrAB and ccrC genes. Three distinct extrachromosomal circularized elements (the entire SCCmecKM45013, ΨSCCmecKM45013 lacking the ccr genes, and SCCKM45013 lacking mecB) flanked by one ISS copy, as well as the chromosomal regions remaining after excision, were detected. An unconventional circularized structure carrying the mecB gene complex was associated with two extensive direct repeat regions, which enclosed two open reading frames (ORFs) (ORF46 and ORF51) flanking the chromosomal mecB-carrying gene complex. This study revealed M. caseolyticus as a potential disease-associated bacterium in dogs and also unveiled an SCCmec element carrying mecB not associated with Tn6045 in the genus Macrococcus.
Resumo:
Epidemiological studies have demonstrated that the majority of human individuals exposed to infection with Echinococcus spp. eggs exhibit resistance to disease as shown by either seroconversion to parasite--specific antigens, and/or the presence of 'dying out' or 'aborted' metacestodes, not including hereby those individuals who putatively got infected but did not seroconvert and who subsequently allowed no development of the pathogen. For those individuals where infection leads to disease, the developing parasite is partially controlled by host immunity. In infected humans, the type of immune response developed by the host accounts for the subsequent trichotomy concerning the parasite development: (i) seroconversion proving infection, but lack of any hepatic lesion indicating the failure of the parasite to establish and further develop within the liver; or resistance as shown by the presence of fully calcified lesions; (ii) controlled susceptibility as found in the "conventional" alveolar echinococcosis (AE) patients who experience clinical signs and symptoms approximately 5-15 years after infection, and (iii) uncontrolled hyperproliferation of the metacestode due to an impaired immune response (AIDS or other immunodeficiencies). Immunomodulation of host immunity toward anergy seems to be triggered by parasite metabolites. Beside immunomodulating IL-10, TGFβ-driven regulatory T cells have been shown to play a crucial role in the parasite-modulated progressive course of AE. A novel CD4+CD25+ Treg effector molecule FGL2 recently yielded new insight into the tolerance process in Echinococcus multilocularis infection.
Resumo:
The inhibitory effects of VSV infection on MuLV production were investigated using the VSV temperature-sensitive mutants t1B17(I & V), tsT1026(I), tsG22(II), and ts052(II). At the permissive temperature, all four mutants suppressed the release of virion-associated MuLV gRNA by approximately 98% within 0.5 to 2.5 hr post infection. At the restrictive temperature and in the absence of cell killing, infection with t1B17(I & V) inhibited the release of MuLV gRNA, while tsT1026(I) and tsG22(II) did not. In contrast, ts052(II) inhibited the release of MuLV gRNA and induced cell killing. During the same time period and at either temperature, all four mutants did not suppress either MuLV-associated protein release or intracellular MuLV sRNA synthesis. These results indicate that VSV inhibits MULV gRNA release at a level somewhere between the synthesis and release of newly synthesized gRNA.^
Resumo:
Background. Community respiratory viruses, mainly RSV and influenza, are significant causes of morbidity and mortality in patients with leukemia and HSCT recipients. The data on impact of PIV infections in these patients is lacking. Methods. We reviewed the records of patients with leukemia and HSCT recipients who developed PIV infection from Oct'02–Nov'07 to determine the outcome of such infections. Results. We identified 200 patients with PIV infections including 80(40%) patients with leukemia and 120 (60%) recipients of HSCT. Median age was 55 y (17-84 y). As compared to HSCT recipients, patients with leukemia had higher APACHE II score (14 vs. 10, p<0.0001); were more likely to have ANC<500 (48% vs. 10%, p<0.0001) and ALC<200 (45% vs. 23.5%, p=0.02). PIV type III was the commonest isolate (172/200, 86%). Most patients 141/200 (70%) had upper respiratory infection (URI), and 59/200 (30%) had pneumonia at presentation. Patients in leukemia group were more likely to require hospitalization due to PIV infection (77% vs. 36% p=0.0001) and were more likely to progress to pneumonia (61% vs. 39%, p=0.002). Fifty five patients received aerosolized ribavirin and/or IVIG. There were no significant differences in the duration of symptoms, length of hospitalization, progression to pneumonia or mortality between the treated verses untreated group. The clinical outcome was unknown in 13 (6%) patients. Complete resolution of symptoms was noted in 91% (171/187) patients and 9% (16/187) patients died. Mortality rate was 17% (16/95) among patients who had PIV pneumonia, with no significant difference between leukemia and HSCT group (16% vs. 17%). The cause of death was acute respiratory failure and/or multi-organ failure in (13, 81%) patients. Conclusions. Patients with leukemia and HSCT could be at high risk for serious PIV infections including PIV pneumonia. Treatment with aerosolized ribavirin and/or IVIG may not have significant effect on the outcome of PIV infection.^
Resumo:
The sensitivity of Interferon-γ release assays for detection of Mycobacterium tuberculosis (MTB) infection or disease is affected by conditions that depress host immunity (such as HIV). It is critical to determine whether these assays are affected by diabetes and related conditions (i.e. hyperglycemia, chronic hyperglycemia, or being overweight/obese) given that immune impairment is thought to underline susceptibility to tuberculosis (TB) in people with diabetes. This is important for tuberculosis control due to the millions of type 2 diabetes patients at risk for tuberculosis worldwide.^ The objective of this study was to identify host characteristics, including diabetes, that may affect the sensitivity of two commercially available Interferon-γ (IFN-γ) release assays (IGRA), the QuantiFERON®-TB Gold (QFT-G) and the T-SPOT®.TB in active TB patients. We further explored whether IFN-γ secretion in response to MTB antigens (ESAT-6 and CFP-10) is associated with diabetes and its defining characteristics (high blood glucose, high HbA1c, high BMI). To achieve these objectives, the sensitivity of QFT-G and T-SPOT. TB assays were evaluated in newly diagnosed, tuberculosis confirmed (by positive smear for acid fast bacilli and/or positive culture for MTB) adults enrolled at Texas and Mexico study sites between March 2006 and April 2009. Univariate and multivariate models were constructed to identify host characteristics associated with IGRA result and level of IFN-γ secretion.^ QFT-G was positive in 68% of tuberculosis patients. Those with diabetes, chronic hyperglycemia or obesity were more likely to have a positive QFT-G result, and to secrete higher levels of IFN-γ in response to the mycobacterial antigens (p<0.05). Previous history of BCG vaccination was the only other host characteristic associated with QFT-G result, whereby a higher proportion of non-BCG vaccinated persons were QFT-G positive, in comparison to vaccinated persons. In a separate group of patients, the T-SPOT.TB was 94% sensitive, with similar performance in all tuberculosis patients, regardless of host characteristics.^ In summary, we have demonstrated the validity of QFT-G and T-SPOT. TB to support the diagnosis of TB in patients with a range of host characteristics, but most notably in patients with diabetes. We also confirmed that TB patients with diabetes and associated characteristics (chronic hyperglycemia or BMI) secreted higher titers of IFN-γ when stimulated with MTB specific antigens, in comparison to patients without these characteristics. Together, these findings suggest that the mechanism by which diabetes increases risk to TB may not be explained by the inability to secrete IFN-γ, a key cytokine for TB control.^
Resumo:
This report shows that loss of heterozygosity at the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) locus occurred in 5/8 (63%) dysplastic liver lesions and 11/18 (61%) hepatocellular carcinomas (HCCs) associated with the high risk factors of hepatitis virus infection and liver cirrhosis. Mutations in the remaining allele were detected in 6/11 (55%) HCCs, including deletions in a polydeoxyguanosine region known to be a target of microsatellite instability. M6P/IGF2R allele loss was also found in cirrhotic tissue of clonal origin adjacent to these dysplastic lesions and HCCs, demonstrating that M6P/IGF2R inactivation occurs early in liver carcinogenesis. In conclusion, HCCs frequently develop from clonal expansions of phenotypically normal, M6P/IGF2R-mutated hepatocytes, providing further support for the idea that M6P/IGF2R functions as a liver tumor-suppressor gene.
Resumo:
The partially overlapping ORF P and ORF O are located within the domains of the herpes simplex virus 1 genome transcribed during latency. Earlier studies have shown that ORF P is repressed by infected cell protein 4 (ICP4), the major viral regulatory protein, binding to its cognate site at the transcription initiation site of ORF P. The ORF P protein binds to p32, a component of the ASF/SF2 alternate splicing factors; in cells infected with a recombinant virus in which ORF P was derepressed there was a significant decrease in the expression of products of key regulatory genes containing introns. We report that (i) the expression of ORF O is repressed during productive infection by the same mechanism as that determining the expression of ORF P; (ii) in cells infected at the nonpermissive temperature for ICP4, ORF O protein is made in significantly lower amounts than the ORF P protein; (iii) the results of insertion of a sequence encoding 20 amino acids between the putative initiator methionine codons of ORF O and ORF P suggest that ORF O initiates at the methionine codon of ORF P and that the synthesis of ORF O results from frameshift or editing of its RNA; and (iv) glutathione S-transferase–ORF O fusion protein bound specifically ICP4 and precluded its binding to its cognate site on DNA in vitro. These and earlier results indicate that ORF P and ORF O together have the capacity to reduce the synthesis or block the expression of regulatory proteins essential for viral replication in productive infection.
Resumo:
Although simian/human immunodeficiency virus (SHIV) strain DH12 replicates to high titers and causes immunodeficiency in pig-tailed macaques, virus loads measured in SHIVDH12-infected rhesus monkeys are consistently 100-fold lower and none of 22 inoculated animals have developed disease. We previously reported that the administration of anti-human CD8 mAb to rhesus macaques at the time of primary SHIVDH12 infection resulted in marked elevations of virus loads. One of the treated animals experienced rapid and profound depletions of circulating CD4+ T lymphocytes. Although the CD4+ T cell number partially recovered, this monkey subsequently suffered significant weight loss and was euthanized. A tissue culture virus stock derived from this animal, designated SHIVDH12R, induced marked and rapid CD4+ cell loss after i.v. inoculation of rhesus monkeys. Retrospective analyses of clinical specimens, collected during the emergence of SHIVDH12R indicated: (i) the input cloned SHIV remained the predominant virus during the first 5–7 months of infection; (ii) variants bearing only a few of the SHIVDH12R consensus changes first appeared 7 months after the administration of anti-CD8 mAb; (iii) high titers of neutralizing antibody directed against the input SHIV were detected by week 10 and persisted throughout the infection; and (iv) no neutralizing antibody against SHIVDH12R ever developed.
Resumo:
Cell-mediated immunity is critical for host resistance to tuberculosis. T lymphocytes recognizing antigens presented by the major histocompatibility complex (MHC) class I and class II molecules have been found to be necessary for control of mycobacterial infection. Mice genetically deficient in the generation of MHC class I and class Ia responses are susceptible to mycobacterial infection. Although soluble protein antigens are generally presented by macrophages to T cells through MHC class II molecules, macrophages infected with Mycobacterium tuberculosis or bacille Calmette-Guerin have been shown to facilitate presentation of ovalbumin through the MHC class I presentation pathway via a TAP-dependent mechanism. How mycobacteria, thought to reside within membrane-bound vacuoles, facilitate communication with the cytoplasm and enable MHC class I presentation presents a paradox. By using confocal microscopy to study the localization of fluorescent-tagged dextrans of varying size microinjected intracytoplasmically into macrophages infected with bacille Calmette-Guerin expressing the green fluorescent protein, molecules as large as 70 kilodaltons were shown to gain access to the mycobacterial phagosome. Possible biological consequences of the permeabilization of vacuolar membranes by mycobacteria would be pathogen access to host cell nutrients within the cytoplasm, perhaps contributing to bacterial pathogenesis, and access of microbial antigens to the MHC class I presentation pathway, contributing to host protective immune responses.
Resumo:
β2-Microglobulin-deficient (β2m−) mice generate a CD4+ major histocompatibility complex class II-restricted cytotoxic T-lymphocyte (CTL) response following infection with lymphocytic choriomeningitis (LCM) virus (LCMV). We have determined the cytotoxic mechanism used by these CD4+ CTLs and have examined the role of this cytotoxic activity in pathogenesis of LCM disease in β2m− mice. Lysis of LCMV-infected target cells by CTLs from β2m− mice is inhibited by addition of soluble Fas-Ig fusion proteins or by pretreatment of the CTLs with the protein synthesis inhibitor emetine. In addition, LCMV-infected cell lines that are resistant to anti-Fas-induced apoptosis are refractory to lysis by these virus-specific CD4+ CTLs. These data indicate that LCMV-specific CD4+ CTLs from β2m− mice use a Fas-dependent lytic mechanism. Intracranial (i.c.) infection of β2m− mice with LCMV results in loss of body weight. Fas-deficient β2m−.lpr mice develop a similar wasting disease following i.c. infection. This suggests that Fas-dependent cytotoxicity is not required for LCMV-induced weight loss. A potential mediator of this chronic wasting disease is tumor necrosis factor (TNF)-α, which is produced by LCMV-specific CD4+ CTLs. In contrast to LCMV-induced weight loss, lethal LCM disease in β2m− mice is dependent on Fas-mediated cytotoxicity. Transfer of immune splenocytes from LCMV-infected β2m− mice into irradiated infected β2m− mice results in death of recipient animals. In contrast, transfer of these splenocytes into irradiated infected β2m−.lpr mice does not cause death. Thus a role for CD4+ T-cell-mediated cytotoxicity in virus-induced immunopathology has now been demonstrated.
Resumo:
A variety of molecular genetic approaches were used to study the effect of rabies virus (RV) infection on host gene expression in mouse brain. The down-regulation of gene expression was found to be a major effect of RV infection by using subtraction hybridization. However, a combination of techniques identified approximately 39 genes activated by infection. These included genes involved in regulation of cell metabolism, protein synthesis, synaptic activity, and cell growth and differentiation. Northern blot analysis to monitor temporal activation of several of these genes following infection revealed essentially two patterns of activation: (i) an early response with up-regulation beginning within 3 days after infection and correlating with transcription of RV nuclear protein; and (ii) a late response with enhanced expression occurring at days 6–7 after infection and associated with peak RV replication. The gene activation patterns and the known functions of their products suggest that a number of host genes may be involved in the replication and spread of RV in the brain.