985 resultados para Hydrology.
Resumo:
We consider estimating the total load from frequent flow data but less frequent concentration data. There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates that minimizes the biases and makes use of informative predictive variables. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized rating-curve approach with additional predictors that capture unique features in the flow data, such as the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and the discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. Forming this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach for two rivers delivering to the Great Barrier Reef, Queensland, Australia. One is a data set from the Burdekin River, and consists of the total suspended sediment (TSS) and nitrogen oxide (NO(x)) and gauged flow for 1997. The other dataset is from the Tully River, for the period of July 2000 to June 2008. For NO(x) Burdekin, the new estimates are very similar to the ratio estimates even when there is no relationship between the concentration and the flow. However, for the Tully dataset, by incorporating the additional predictive variables namely the discounted flow and flow phases (rising or recessing), we substantially improved the model fit, and thus the certainty with which the load is estimated.
Resumo:
A method is presented for identification of parameters in unconfined aquifers from pumping tests, based on the optimisation of the objective function using the least squares approach. Four parameters are to be evaluated, namely: The hydraulic conductivity in the radial and the vertical directions, the storage coefficient and the specific yield. The sensitivity analysis technique is used for solving the optimisation problem. Besides eliminating the subjectivity involved in the graphical procedure, the method takes into account the field data at all time intervals without classifying them into small and large time intervals and does not use the approximation that the ratio of the storage coefficient to the specific yield tends to zero. Two illustrative examples are presented and it is found that the parameter estimates from the computational and graphical procedures differ fairly significantly.
Resumo:
Tillage is defined here in a broad sense, including disturbance of the soil and crop residues, wheel traffic and sowing opportunities. In sub-tropical, semi-arid cropping areas in Australia, tillage systems have evolved from intensively tilled bare fallow systems, with high soil losses, to reduced and no tillage systems. In recent years, the use of controlled traffic has also increased. These conservation tillage systems are successful in reducing water erosion of soil and sediment-bound chemicals. Control of runoff of dissolved nutrients and weakly sorbed chemicals is less certain. Adoption of new practices appears to have been related to practical and economic considerations, and proved to be more profitable after a considerable period of research and development. However there are still challenges. One challenge is to ensure that systems that reduce soil erosion, which may involve greater use of chemicals, do not degrade water quality in streams. Another challenge is to ensure that systems that improve water entry do not increase drainage below the crop root zone, which would increase the risk of salinity. Better understanding of how tillage practices influence soil hydrology, runoff and erosion processes should lead to better tillage systems and enable better management of risks to water quality and soil health. Finally, the need to determine the effectiveness of in-field management practices in achieving stream water quality targets in large, multi-land use catchments will challenge our current knowledge base and the tools available.
Resumo:
Summary Poor land condition resulting from unsustainable grazing practices can reduce enterprise profitability and increase water, sediment and associated nutrient runoff from properties and catchments. This paper presents the results of a 6 year field study that used a series of hillslope flume experiments to evaluate the impact of improved grazing land management (GLM) on hillslope runoff and sediment yields. The study was carried out on a commercial grazing property in a catchment draining to the Burdekin River in northern Australia. During this study average ground cover on hillslopes increased from ~35% to ~75%, although average biomass and litter levels are still relatively low for this landscape type (~60 increasing to 1100 kg of dry matter per hectare). Pasture recovery was greatest on the upper and middle parts of hillslopes. Areas that did not respond to the improved grazing management had <10% cover and were on the lower slopes associated with the location of sodic soil and the initiation of gullies. Comparison of ground cover changes and soil conditions with adjacent properties suggest that grazing management, and not just improved rainfall conditions, were responsible for the improvements in ground cover in this study. The ground cover improvements resulted in progressively lower runoff coefficients for the first event in each wet season, however, runoff coefficients were not reduced at the annual time scale. The hillslope annual sediment yields declined by ~70% on two out of three hillslopes, although where bare patches (with <10% cover) were connected to gullies and streams, annual sediment yields increased in response to higher rainfall in latter years of the study. It appears that bare patches are the primary source areas for both runoff and erosion on these hillslopes. Achieving further reductions in runoff and erosion in these landscapes may require management practices that improve ground cover and biomass in bare areas, particularly when they are located adjacent to concentrated drainage lines.
Resumo:
A model of root water extraction is proposed, in which a linear variation of extraction rate with depth is assumed. Five crops are chosen for simulation studies of the model, and soil moisture depletion under optimal conditions from different layers for each crop is calculated. Similar calculations are also made using the constant extraction rate model. Rooting depth is assumed to vary linearly with potential evapotranspiration for each crop during the vegetative phase. The calculated depletion patterns are compared with measured mean depletion patterns for each crop. It is shown that the constant extraction rate model results in large errors in the prediction of soil moisture depletion, while the proposed linear extraction rate model gives satisfactory results. Hypothetical depletion patterns predicted by the model in combination with a moisture tension-dependent sink term developed elsewhere are indicated.
Resumo:
Northern peatlands are thought to store one third of all soil carbon (C). Besides the C sink function, peatlands are one of the largest natural sources of methane (CH4) to the atmosphere. Climate change may affect the C gas dynamics as well as the labile C pool. Because the peatland C sequestration and CH4 emissions are governed by high water levels, changes in hydrology are seen as the driving factor in peatland ecosystem change. This study aimed to quantify the carbon dioxide (CO2) and CH4 dynamics of a fen ecosystem at different spatial scales: plant community components scale, plant community scale and ecosystem scale, under hydrologically normal and water level drawdown conditions. C gas exchange was measured in two fens in southern Finland applying static chamber and eddy covariance techniques. During hydrologically normal conditions, the ecosystem was a CO2 sink and CH4 source to the atmosphere. Sphagnum mosses and sedges were the most important contributors to the community photosynthesis. The presence of sedges had a major positive impact on CH4 emissions while dwarf shrubs had a slightly attenuating impact. C fluxes varied considerably between the plant communities. Therefore, their proportions determined the ecosystem scale fluxes. An experimental water level drawdown markedly reduced the photosynthesis and respiration of sedges and Sphagnum mosses and benefited shrubs. Consequently, changes were smaller at the ecosystem scale than at the plant group scale. The decrease in photosynthesis and the increase in respiration, mostly peat respiration, made the fen a smaller CO2 sink. CH4 fluxes were significantly lowered, close to zero. The impact of natural droughts was similar to, although more modest than, the impact of the experimental water level drawdown. The results are applicable to the short term impacts of the water level drawdown and to climatic conditions in which droughts become more frequent.
Resumo:
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) forests dominate in Finnish Lapland. The need to study the effect of both soil factors and site preparation on the performance of planted Scots pine has increased due to the problems encountered in reforestation, especially on mesic and moist, formerly spruce-dominated sites. The present thesis examines soil hydrological properties and conditions, and effect of site preparation on them on 10 pine- and 10 spruce-dominated upland forest sites. Finally, the effects of both the site preparation and reforestation methods, and soil hydrology on the long-term performance of planted Scots pine are summarized. The results showed that pine and spruce sites differ significantly in their soil physical properties. Under field capacity or wetter soil moisture conditions, planted pines presumably suffer from excessive soil water and poor soil aeration on most of the originally spruce sites, but not on the pine sites. The results also suggested that site preparation affects the soil-water regime and thus prerequisites for forest growth over two decades after site preparation. High variation in the survival and mean height of planted pine was found. The study suggested that on spruce sites, pine survival is the lowest on sites that dry out slowly after rainfall events, and that height growth is the fastest on soils that reach favourable aeration conditions for root growth soon after saturation, and/or where the average air-filled porosity near field capacity is large enough for good root growth. Survival, but not mean height can be enhanced by employing intensive site preparation methods on spruce sites. On coarser-textured pine sites, site preparation methods don t affect survival, but methods affecting soil fertility, such as prescribed burning and ploughing, seem to enhance the height growth of planted Scots pines over several decades. The use of soil water content in situ as the sole criterion for sites suitable for pine reforestation was tested and found to be a relatively uncertain parameter. The thesis identified new potential soil variables, which should be tested using other data in the future.
Resumo:
Wood is an important biological resource which contributes to nutrient and hydrology cycles through ecosystems, and provides structural support at the plant level. Thousands of genes are involved in wood development, yet their effects on phenotype are not well understood. We have exploited the low genomic linkage disequilibrium (LD) and abundant phenotypic variation of forest trees to explore allelic diversity underlying wood traits in an association study. Candidate gene allelic diversity was modelled against quantitative variation to identify SNPs influencing wood properties, growth and disease resistance across three populations of Corymbia citriodora subsp. variegata, a forest tree of eastern Australia. Nine single nucleotide polymorphism (SNP) associations from six genes were identified in a discovery population (833 individuals). Associations were subsequently tested in two smaller populations (130160 individuals), validating our findings in three cases for actin 7 (ACT7) and COP1 interacting protein 7 (CIP7). The results imply a functional role for these genes in mediating wood chemical composition and growth, respectively. A flip in the effect of ACT7 on pulp yield between populations suggests gene by environment interactions are at play. Existing evidence of gene function lends strength to the observed associations, and in the case of CIP7 supports a role in cortical photosynthesis.
Resumo:
A transformation is suggested which can transform a non-Gaussian monthly hydrological time series into a Gaussian one. The suggested approach is verified with data of ten Indian rainfall time series. Incidentally, it is observed that once the deterministic trends are removed, the transformation leads to an uncorrelated process for monthly rainfall. The procedure for normalization is general enough in that it should be also applicable to river discharges. This is verified to a limited extent by considering data of two Indian river discharges.
Resumo:
An analytical solution is presented, making use of the Schwartz-Christoffel transformation, for determining the seepage characteristics for the problem of flow under a weir having two unequal sheetpiles at the ends and embedded in an anisotropic porous medium of finite thickness. Results for several particular cases of simple hydraulic structures can be obtained from the general solution presented. Numerical results in nondimensional form have been given for quantity of seepage and exit gradient distribution for various conditions in the equivalent transformed isotropic section and, by making use of the physical parameters in the actual anisotropic plane and the set of transformation relations given, these quantities (seepage loss, exit gradient) can be interpreted in the actual anisotropic physical plane.
Resumo:
This paper introduces a policy-making support tool called ‘Micro-level Urban ecosystem Sustainability IndeX (MUSIX)’. The index serves as a sustainability assessment model that monitors six aspects of urban ecosystems, hydrology, ecology, pollution, location, design, and efficiency based on parcel-scale indicators. This index is applied in a case study investigation in the Gold Coast City, Queensland, Australia. The outcomes reveal that there are major environmental problems caused by increased impervious surfaces from growing urban development in the study area. The findings suggest that increased impervious surfaces are linked to increased surface runoff, car dependency, transport-related pollution, poor public transport accessibility, and unsustainable built environment. This paper presents how the MUSIX outputs can be used to guide policy-making through the evaluation of existing policies.
Resumo:
Metanogeenit ovat hapettomissa oloissa eläviä arkkien pääryhmään kuuluvia mikrobeja, joiden ainutlaatuisen aineenvaihdunnan seurauksena syntyy metaania. Ilmakehässä metaani on voimakas kasvihuonekaasu. Yksi suurimmista luonnon metaanilähteistä ovat kosteikot. Pohjoisten soiden metaanipäästöt vaihtelevat voimakkaasti eri soiden välillä ja yhden suon sisälläkin, riippuen muun muassa vuodenajasta, suotyypistä ja kasvillisuudesta. Väitöskirjatyössä tutkittiin metaanipäästöjen vaihtelun mikrobiologista taustaa. Tutkimuksessa selvitettiin suotyypin, vuodenajan, tuhkalannoituksen ja turvesyvyyden vaikutusta metanogeeniyhteisöihin sekä metaanintuottoon kolmella suomalaisella suolla. Lisäksi tutkittiin ei-metanogeenisia arkkeja ja bakteereita, koska ne muodostavat metaanin tuoton lähtöaineet osana hapetonta hajotusta. Mikrobiyhteisöt analysoitiin DNA- ja RNA-lähtöisillä, polymeraasiketjureaktioon (PCR) perustuvilla menetelmillä. Merkkigeeneinä käytettiin metaanin tuottoon liittyvää mcrA-geeniä sekä arkkien ja bakteerien ribosomaalista 16S RNA-geeniä. Metanogeeniyhteisöt ja metaanintuotto erosivat huomattavasti happaman ja vähäravinteisen rahkasuon sekä ravinteikkaampien sarasoiden välillä. Rahkasuolta löytyi lähes yksinomaan Methanomicrobiales-lahkon metanogeeneja, jotka tuottavat metaania vedystä ja hiilidioksidista. Sarasoiden metanogeeniyhteisöt olivat monimuotoisempia, ja niillä esiintyi myös asetaattia käyttäviä metanogeeneja. Vuodenaika vaikutti merkittävästi metaanintuottoon. Talvella havaittiin odottamattoman suuri metaanintuottopotentiaali sekä viitteitä aktiivisista metanogeeneista. Arkkiyhteisön koostumus sen sijaan vaihteli vain vähän. Tuhkalannoitus, jonka tarkoituksena on edistää puiden kasvua ojitetuilla soilla, ei merkittävästi vaikuttanut metaanintuottoon tai -tuottajiin. Ojitetun suon yhteisöt kuitenkin muuttuivat turvesyvyyden mukaan. Vertailtaessa erilaisia PCR-menetelmiä todettiin, että kolmella mcrA-geeniin kohdistuvalla alukeparilla havaittiin pääosin samat ojitetun suon metanogeenit, mutta lajien runsaussuhteet riippuvat käytetyistä alukkeista. Soilla havaitut bakteerit kuuluivat pääjaksoihin Deltaproteobacteria, Acidobacteria ja Verrucomicrobia. Lisäksi löydettiin Crenarchaeota-pääjakson ryhmiin 1.1c ja 1.3 kuuluvia ei-metanogeenisia arkkeja. Tulokset ryhmien esiintymisestä hapettomassa turpeessa antavat lähtökohdan selvittää niiden mahdollisia vuorovaikutuksia metanogeenien kanssa. Tutkimuksen tulokset osoittivat, että metanogeeniyhteisön koostumus heijastaa metaanintuottoon vaikuttavia kemiallisia tai kasvillisuuden vaihteluita kuten suotyyppiä. Soiden metanogeenien ja niiden fysiologian parempi tuntemus voi auttaa ennustamaan ympäristömuutosten vaikutusta soiden metaanipäästöihin.
Resumo:
The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.
Resumo:
The superconducting (or cryogenic) gravimeter (SG) is based on the levitation of a superconducting sphere in a stable magnetic field created by current in superconducting coils. Depending on frequency, it is capable of detecting gravity variations as small as 10-11ms-2. For a single event, the detection threshold is higher, conservatively about 10-9 ms-2. Due to its high sensitivity and low drift rate, the SG is eminently suitable for the study of geodynamical phenomena through their gravity signatures. I present investigations of Earth dynamics with the superconducting gravimeter GWR T020 at Metsähovi from 1994 to 2005. The history and key technical details of the installation are given. The data processing methods and the development of the local tidal model at Metsähovi are presented. The T020 is a part of the worldwide GGP (Global Geodynamics Project) network, which consist of 20 working station. The data of the T020 and of other participating SGs are available to the scientific community. The SG T020 have used as a long-period seismometer to study microseismicity and the Earth s free oscillation. The annual variation, spectral distribution, amplitude and the sources of microseism at Metsähovi were presented. Free oscillations excited by three large earthquakes were analyzed: the spectra, attenuation and rotational splitting of the modes. The lowest modes of all different oscillation types are studied, i.e. the radial mode 0S0, the "football mode" 0S2, and the toroidal mode 0T2. The very low level (0.01 nms-1) incessant excitation of the Earth s free oscillation was detected with the T020. The recovery of global and regional variations in gravity with the SG requires the modelling of local gravity effects. The most important of them is hydrology. The variation in the groundwater level at Metsähovi as measured in a borehole in the fractured bedrock correlates significantly (0.79) with gravity. The influence of local precipitation, soil moisture and snow cover are detectable in the gravity record. The gravity effect of the variation in atmospheric mass and that of the non-tidal loading by the Baltic Sea were investigated together, as sea level and air pressure are correlated. Using Green s functions it was calculated that a 1 metre uniform layer of water in the Baltic Sea increases the gravity at Metsähovi by 31 nms-2 and the vertical deformation is -11 mm. The regression coefficient for sea level is 27 nms-2m-1, which is 87% of the uniform model. These studies are associated with temporal height variations using the GPS data of Metsähovi permanent station. Results of long time series at Metsähovi demonstrated high quality of data and correctly carried out offsets and drift corrections. The superconducting gravimeter T020 has been proved to be an eminent and versatile tool in studies of the Earth dynamics.
Resumo:
Accurate and stable time series of geodetic parameters can be used to help in understanding the dynamic Earth and its response to global change. The Global Positioning System, GPS, has proven to be invaluable in modern geodynamic studies. In Fennoscandia the first GPS networks were set up in 1993. These networks form the basis of the national reference frames in the area, but they also provide long and important time series for crustal deformation studies. These time series can be used, for example, to better constrain the ice history of the last ice age and the Earth s structure, via existing glacial isostatic adjustment models. To improve the accuracy and stability of the GPS time series, the possible nuisance parameters and error sources need to be minimized. We have analysed GPS time series to study two phenomena. First, we study the refraction in the neutral atmosphere of the GPS signal, and, second, we study the surface loading of the crust by environmental factors, namely the non-tidal Baltic Sea, atmospheric load and varying continental water reservoirs. We studied the atmospheric effects on the GPS time series by comparing the standard method to slant delays derived from a regional numerical weather model. We have presented a method for correcting the atmospheric delays at the observational level. The results show that both standard atmosphere modelling and the atmospheric delays derived from a numerical weather model by ray-tracing provide a stable solution. The advantage of the latter is that the number of unknowns used in the computation decreases and thus, the computation may become faster and more robust. The computation can also be done with any processing software that allows the atmospheric correction to be turned off. The crustal deformation due to loading was computed by convolving Green s functions with surface load data, that is to say, global hydrology models, global numerical weather models and a local model for the Baltic Sea. The result was that the loading factors can be seen in the GPS coordinate time series. Reducing the computed deformation from the vertical time series of GPS coordinates reduces the scatter of the time series; however, the long term trends are not influenced. We show that global hydrology models and the local sea surface can explain up to 30% of the GPS time series variation. On the other hand atmospheric loading admittance in the GPS time series is low, and different hydrological surface load models could not be validated in the present study. In order to be used for GPS corrections in the future, both atmospheric loading and hydrological models need further analysis and improvements.