697 resultados para Hydration.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of supplementary cementitious materials (SCMs), such as fly ash (FA) and slag, generally improves concrete workability, durability, and long-term strength. New trends in sustainable development of concrete infrastructure and in environmental regulations on waste disposal are spurring use of SCMs in concrete. However, use of SCM concrete is sometimes limited due to a lack of understanding about material behaviors and lack of proper specifications for its construction practice. It is believed that SCM concrete performance varies significantly with the source and proportion of the cementitious materials. SCM concrete often displays slower hydration, accompanied by slower setting and lower early-age strength, especially under cold weather conditions. The present research was conducted to have a better understanding of SCM concrete behaviors under different weather conditions. In addition to the study of the effect of SCM content on concrete set time using cementitious materials from different sources/manufacturers, further research may be needed to investigate the effects of SCM combinations on concrete flowability, air stability, cracking resistance, and durability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete curing is closely related to cement hydration, microstructure development, and concrete performance. Application of a liquid membrane-forming curing compound is among the most widely used curing methods for concrete pavements and bridge decks. Curing compounds are economical, easy to apply, and maintenance free. However, limited research has been done to investigate the effectiveness of different curing compounds and their application technologies. No reliable standard testing method is available to evaluate the effectiveness of curing, especially of the field concrete curing. The present research investigates the effects of curing compound materials and application technologies on concrete properties, especially on the properties of surface concrete. This report presents a literature review of curing technology, with an emphasis on curing compounds, and the experimental results from the first part of this research—lab investigation. In the lab investigation, three curing compounds were selected and applied to mortar specimens at three different times after casting. Two application methods, single- and double-layer applications, were employed. Moisture content, conductivity, sorptivity, and degree of hydration were measured at different depths of the specimens. Flexural and compressive strength of the specimens were also tested. Statistical analysis was conducted to examine the relationships between these material properties. The research results indicate that application of a curing compound significantly increased moisture content and degree of cement hydration and reduced sorptivity of the near-surface-area concrete. For given concrete materials and mix proportions, optimal application time of curing compounds depended primarily upon the weather condition. If a sufficient amount of a high-efficiency-index curing compound was uniformly applied, no double-layer application was necessary. Among all test methods applied, the sorptivity test is the most sensitive one to provide good indication for the subtle changes in microstructure of the near-surface-area concrete caused by different curing materials and application methods. Sorptivity measurement has a close relation with moisture content and degree of hydration. The research results have established a baseline for and provided insight into the further development of testing procedures for evaluation of curing compounds in field. Recommendations are provided for further field study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contact aureoles provide an excellent geologic environment to study the mechanisms of metamorphic reactions in a natural system. The Torres del Paine (TP) intrusion is one of the most spectacular natural laboratories because of its excellent outcrop conditions. It formed in a period from 12.59 to 12.43 Ma and consists of three large granite and four smaller mafic batches. The oldest granite is on top, the youngest at the bottom of the granitic complex, and the granites overly the mafic laccolith. The TP intruded at a depth of 2-3 km into regional metamorphic anchizone to greenschist facies pelites, sandstones, and conglomerates of the Cerro Toro and Punta Barrosa formations. It formed a thin contact aureole of 150-400 m width. This thesis focuses on the reaction kinetics of the mineral cordierite in the contact aureole using quantitative textural analysis methods. First cordierite was formed from chlorite break¬down (zone I, ca. 480 °C, 750 bar). The second cordierite forming reaction was the muscovite break-down, which is accompanied by a modal decrease in biotite and the appearance of k- feldspar (zone II, 540-550 °C, 750 bar). Crystal sizes of the roundish, poikiloblastic cordierites were determined from microscope thin section images by manually marking each crystal. Images were then automatically processed with Matlab. The correction for the intersection probability of each crystal radius yields the crystal size distribution in the rock. Samples from zone I below the laccolith have the largest crystals (0.09 mm). Cordierites from zone II are smaller, with a maximum crystal radius of 0.057 mm. Rocks from zone II have a larger number of small cordierite crystals than rocks from zone I. A combination of these quantitative analysis with numerical modeling of nucleation and growth, is used to infer nucleation and growth parameters which are responsible for the observed mineral textures. For this, the temperature-time paths of the samples need to be known. The thermal history is complex because the main body of the intrusion was formed by several intrusive batches. The emplacement mechanism and duration of each batch can influence the thermal structure in the aureole. A possible subdivision of batches in smaller increments, so called pulses, will focus heat at the side of the intrusion. Focusing all pulses on one side increases the contact aureole size on that side, but decreases it on the other side. It forms a strongly asymmetric contact aureole. Detailed modeling shows that the relative thicknesses of the TP contact aureole above and below the intrusion (150 and 400 m) are best explained by a rapid emplacement of at least the oldest granite batch. Nevertheless, temperatures are significantly too low in all models, compared to observed mineral assemblages in the hornfelses. Hence, an other important thermal mechanisms needs to take place in the host rock. Clastic minerals in the immature sediments outside the contact aureole are hydrated due to small amounts of expelled fluids during contact metamorphism. This leads to a temperature increase of up to 50 °C. The origin of fluids can be traced by stable isotopes. Whole rock stable isotope data (6D and δ180) and chlorine concentrations in biotite document that the TP intrusion induced only very small amounts of fluid flow. Oxygen whole rock data show δ180 values between 9.0 and 10.0 %o within the first 5 m of the contact. Values increase to 13.0 - 15.0 %o further away from the intrusion. Whole rock 6D values display a more complex zoning. First, host rock values (-90 to -70 %o) smoothly decrease towards the contact by ca. 20 %o, up to a distance of ca. 150 m. This is followed by an increase of ca. 20 %o within the innermost 150 m of the aureole (-97.0 to -78 %o at the contact). The initial decrease in 6D values is interpreted to be due to Rayleigh fractionation accompanying the dehydration reactions forming cordierite, while the final increase reflects infiltration of water-rich fluids from the intrusion. An over-estimate on the quantity and the corresponding thermal effect yields a temperature increase of less than 30 °C. This suggests that fluid flow might have contributed only for a small amount to the thermal evolution of the system. A combination of the numerical growth model with the thermal model, including the hydration reaction enthalpies but neglecting fluid flow and incremental growth, can be used to numerically reproduce the observed cordierite textures in the contact aureole. This yields kinetic parameters which indicate fast cordierite crystallization before the thermal peak in the inner aureole, and continued reaction after the thermal peak in the outermost aureole. Only small temperature dependencies of the kinetic parameters seem to be needed to explain the obtained crystal size data. - Les auréoles de contact offrent un cadre géologique privilégié pour l'étude des mécanismes de réactions métamorphiques associés à la mise en place de magmas dans la croûte terrestre. Par ses conditions d'affleurements excellentes, l'intrusion de Torres del Paine représente un site exceptionnel pour améliorer nos connaissances de ces processus. La formation de cette intrusion composée de trois injections granitiques principales et de quatre injections mafiques de volume inférieur couvre une période allant de 12.50 à 12.43 Ma. Le plus vieux granite forme la partie sommitale de l'intrusion alors que l'injection la plus jeune s'observe à la base du complexe granitique; les granites recouvrent la partie mafique du laccolite. L'intrusion du Torres del Paine s'est mise en place a 2-3 km de profondeur dans un encaissant métamorphique. Cet encaissant est caractérisé par un métamorphisme régional de faciès anchizonal à schiste vert et est composé de pélites, de grès, et des conglomérats des formations du Cerro Toro et Punta Barrosa. La mise en place des différentes injections granitiques a généré une auréole de contact de 150-400 m d'épaisseur autour de l'intrusion. Cette thèse se concentre sur la cinétique de réaction associée à la formation de la cordiérite dans les auréoles de contact en utilisant des méthodes quantitatives d'analyses de texture. On observe plusieurs générations de cordiérite dans l'auréole de contact. La première cordiérite est formée par la décomposition de la chlorite (zone I, environ 480 °C, 750 bar), alors qu'une seconde génération de cordiérite est associée à la décomposition de la muscovite, laquelle est accompagnée par une diminution modale de la teneur en biotite et l'apparition de feldspath potassique (zone II, 540-550 °C, 750 bar). Les tailles des cristaux de cordiérites arrondies et blastic ont été déterminées en utilisant des images digitalisées des lames minces et en marquant individuellement chaque cristal. Les images sont ensuite traitées automatiquement à l'aide du programme Matlab. La correction de la probabilité d'intersection en fonction du rayon des cristaux permet de déterminer la distribution de la taille des cristaux dans la roche. Les échantillons de la zone I, en dessous du lacolite, sont caractérisés par de relativement grands cristaux (0.09 mm). Les cristaux de cordiérite de la zone II sont plus petits, avec un rayon maximal de 0.057 mm. Les roches de la zone II présentent un plus grand nombre de petits cristaux de cordiérite que les roches de la zone I. Une combinaison de ces analyses quantitatives avec un modèle numérique de nucléation et croissance a été utilisée pour déduire les paramètres de nucléation et croissance contrôlant les différentes textures minérales observées. Pour développer le modèle de nucléation et de croissance, il est nécessaire de connaître le chemin température - temps des échantillons. L'histoire thermique est complexe parce que l'intrusion est produite par plusieurs injections successives. En effet, le mécanisme d'emplace¬ment et la durée de chaque injection peuvent influencer la structure thermique dans l'auréole. Une subdivision des injections en plus petits incréments, appelés puises, permet de concentrer la chaleur dans les bords de l'intrusion. Une mise en place préférentielle de ces puises sur un côté de l'intrusion modifie l'apport thermique et influence la taille de l'auréole de contact produite, auréole qui devient asymétrique. Dans le cas de la première injection de granite, une modélisation détaillée montre que l'épaisseur relative de l'auréole de contact de Torres del Paine au-dessus et en dessous de l'intrusion (150 et 400 m) est mieux expliquée par un emplacement rapide du granite. Néanmoins, les températures calculées dans l'auréole de con¬tact sont trop basses pour que les modèles thermiques soient cohérants par rapport à la taille de cette auréole. Ainsi, un autre mecanisme exothermique est nécessaire pour permettre à la roche encais¬sante de produire les assemblages observés. L'observation des roches encaissantes entourant les granites montre que les minéraux clastiques dans les sédiments immatures au-dehors de l'auréole sont hydratés suite à la petite quantité de fluide expulsée durant le métamorphisme de contact et/ou la mise en place des granites. Les réactions d'hydratation peuvent permettre une augmentation de la température jusqu'à 50 °C. Afin de déterminer l'origine des fluides, une étude isotopique de roches de l'auréole de contact a été entreprise. Les isotopes stables d'oxygène et d'hydrogène sur la roche totale ainsi que la concentration en chlore dans la biotite indiquent que la mise en place des granites du Torres del Paine n'induit qu'une circulation de fluide limitée. Les données d'oxygène sur roche totale montrent des valeurs δ180 entre 9.0 et 10.0%o au sein des cinq premiers mètres du contact. Les valeurs augmentent jusqu'à 13.0 - 15.0 plus on s'éloigne de l'intrusion. Les valeurs 5D sur roche totale montrent une zonation plus complexe. Les valeurs de la roche encaissante (-90 à -70%o) diminuent progressivement d'environ 20%o depuis l'extérieur de l'auréole jusqu'à une distance d'environ 150 m du granite. Cette diminution est suivie par une augmentation d'environ 20%o au sein des 150 mètres les plus proches du contact (-97.0 à -78%o au contact). La diminution initiale des valeurs de 6D est interprétée comme la conséquence du fractionnement de Rayleigh qui accompagne les réactions de déshydratation formant la cordiérite, alors que l'augmentation finale reflète l'infiltration de fluide riche en eau venant de l'intrusion. A partir de ces résultats, le volume du fluide issu du granite ainsi que son effet thermique a pu être estimé. Ces résultats montrent que l'augmentation de température associée à ces fluides est limitée à un maximum de 30 °C. La contribution de ces fluides dans le bilan thermique est donc faible. Ces différents résultats nous ont permis de créer un modèle thermique associé à la for¬mation de l'auréole de contact qui intègre la mise en place rapide du granite et les réactions d'hydratation lors du métamorphisme. L'intégration de ce modèle thermique dans le modèle numérique de croissance minérale nous permet de calculer les textures des cordiérites. Cepen¬dant, ce modèle est dépendant de la vitesse de croissance et de nucléation de ces cordiérites. Nous avons obtenu ces paramètres en comparant les textures prédites par le modèle et les textures observées dans les roches de l'auréole de contact du Torres del Paine. Les paramètres cinétiques extraits du modèle optimisé indiquent une cristallisation rapide de la cordiérite avant le pic thermique dans la partie interne de l'auréole, et une réaction continue après le pic thermique dans la partie la plus externe de l'auréole. Seules de petites dépendances de température des paramètres de cinétique semblent être nécessaires pour expliquer les don¬nées obtenues sur la distribution des tailles de cristaux. Ces résultats apportent un éclairage nouveau sur la cinétique qui contrôle les réactions métamorphiques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advent of new technologies, experience with long-term mechanical circulatory support (MCS) is rapidly growing. Candidates to MCS are selected based on concepts, strategies and classifications that are specific to this indication. As results drastically improve, supported by stronger scientific evidence, the trend is towards earlier implantation. An adequate pre-implant follow-up is mandatory in order to avoid missing the best window of opportunity for implantation. While on chronic support, the hemodynamic profile of patients with continuous-flow ventricular assist devices is unique and remarkably influenced by the hydration status. Optimal management of these patients from the pre-implant phase to the long-term support phase requires a multidisciplinary approach that is similar to that already long validated for organ transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Creatinine clearance is the most common method used to assess glomerular filtration rate (GFR). In children, GFR can also be estimated without urine collection, using the formula GFR (mL/min x 1.73 m2) = K x height [cm]/Pcr [mumol/L]), where Pcr represents the plasma creatinine concentration. K is usually calculated using creatinine clearance (Ccr) as an index of GFR. The aim of the present study was to evaluate the reliability of the formula, using the standard UV/P inulin clearance to calculate K. METHODS: Clearance data obtained in 200 patients (1 month to 23 years) during the years 1988-1994 were used to calculate the factor K as a function of age. Forty-four additional patients were studied prospectively in conditions of either hydropenia or water diuresis in order to evaluate the possible variation of K as a function of urine flow rate. RESULTS: When GFR was estimated by the standard inulin clearance, the calculated values of K was 39 (infants less than 6 months), 44 (1-2 years) and 47 (2-12 years). The correlation between the values of GFR, as estimated by the formula, and the values measured by the standard clearance of inulin was highly significant; the scatter of individual values was however substantial. When K was calculated using Ccr, the formula overestimated Cin at all urine flow rates. When calculated from Ccr, K varied as a function of urine flow rate (K = 50 at urine flow rates of 3.5 and K = 64 at urine flow rates of 8.5 mL/min x 1.73 m2). When calculated from Cin, in the same conditions, K remained constant with a value of 50. CONCLUSIONS: The formula GFR = K x H/Pcr can be used to estimate GFR. The scatter of values precludes however the use of the formula to estimate GFR in pathophysiological studies. The formula should only be used when K is calculated from Cin, and the plasma creatinine concentration is measured in well defined conditions of hydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our aim was to evaluate the role of forced diuresis in improving the diagnostic accuracy of abdominopelvic (18)F-FDG PET. METHODS: Thirty-two patients were enrolled. Besides the presence of known intravesical tumors or undefined renal lesions on the initial PET scan, the inclusion criterion was the appearance of indeterminate or equivocal (18)F-FDG foci that extended along the course of the urinary tract and could not confidently be separated from urinary activity. For each patient, a second abdominopelvic PET study was performed after intravenous injection of 0.5 mg of furosemide per kilogram of body weight (maximum, 40 mg) coupled with parenteral infusion of physiologic saline. RESULTS: Forced diuresis coupled with parenteral hydration eliminated any significant (18)F-FDG activity from the lower urinary tract in 31 (97%) of 32 patients after the bladder had been voided 3 successive times. Twelve intravesical lesions were visualized with outstanding clarity, whereas radiologic suspicion of locally recurrent bladder tumors was ruled out in 3 patients. Among 14 indeterminate or equivocal extravesical foci, 7 were deemed of no clinical value because they disappeared after furosemide challenge, whereas 7 persisting foci were proven to be true-positive PET findings. The performance of (18)F-FDG PET in characterizing 3 renal-space-occupying lesions could not be improved by our protocol. CONCLUSION: Furosemide challenge has the potential to noninvasively resolve the inherent (18)F-FDG contrast handicap in the lower urinary tract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Albitization is a common process during which hydrothermal fluids convert plagioclase and/or K-feldspar into nearly pure albite; however, its specific mechanism in granitoids is not well understood. The c. 1700 Ma A-type metaluminous ferroan granites in the Khetri complex of Rajasthan, NW India, have been albitized to a large extent by two metasomatic fronts, an initial transformation of oligoclase to nearly pure albite and a subsequent replacement of microcline by albite, with sharp contacts between the microcline-bearing and microcline-free zones. Albitization has bleached the original pinkish grey granite and turned it white. The mineralogical changes include transformation of oligoclase (similar to An(12)) and microcline (similar to Or(95)) to almost pure albite (similar to An(0 center dot 5-2)), amphibole from potassian ferropargasite (X-Fe 0 center dot 84-0 center dot 86) to potassic hastingsite (X-Fe 0 center dot 88-0 center dot 97) and actinolite (X-Fe 0 center dot 32-0 center dot 67), and biotite from annite (X-Fe 0 center dot 71-0 center dot 74) to annite (X-Fe 0 center dot 90-0 center dot 91). Whole-rock isocon diagrams show that, during albitization, the granites experienced major hydration, slight gain in Si and major gain in Na, whereas K, Mg, Fe and Ca were lost along with Rb, Ba, Sr, Zn, light rare earth elements and U. Whole-rock Sm-Nd isotope data plot on an apparent isochron of 1419 +/- 98 Ma and reveal significant disturbance and at least partial resetting of the intrusion age. Severe scatter in the whole-rock Rb-Sr isochron plot reflects the extreme Rb loss in the completely albitized samples, effectively freezing Sr-87/Sr-86 ratios in the albite granites at very high values (0 center dot 725-0 center dot 735). This indicates either infiltration of highly radiogenic Sr from the country rock or, more likely, radiogenic ingrowth during a considerable time lag (estimated to be at least 300 Myr) between original intrusion and albitization. The albitization took place at similar to 350-400 degrees C. It was caused by the infiltration of an ascending hydrothermal fluid that had acquired high Na/K and Na/Ca ratios during migration through metamorphic rocks at even lower temperatures in the periphery of the plutons. Oxygen isotope ratios increase from delta O-18 = 7 parts per thousand in the original granite to values of 9-10 parts per thousand in completely albitized samples, suggesting that the fluid had equilibrated with surrounding metamorphosed crust. A metasomatic model, using chromatographic theory of fluid infiltration, explains the process for generating the observed zonation in terms of a leading metasomatic front where oligoclase of the original granite is converted to albite, and a second, trailing front where microcline is also converted to albite. The temperature gradients driving the fluid infiltration may have been produced by the high heat production of the granites themselves. The confinement of the albitized granites along the NE-SW-trending Khetri lineament and the pervasive nature of the albitization suggest that the albitizing fluids possibly originated during reactivation of the lineament. More generally, steady-state temperature gradients induced by the high internal heat production of A-type granites may provide the driving force for similar metasomatic and ore-forming processes in other highly enriched granitoid bodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diagnosis and decisions on life-sustaining treatment (LST) in disorders of consciousness, such as the vegetative state (VS) and the minimally conscious state (MCS), are challenging for neurologists. The locked-in syndrome (LiS) is sometimes confounded with these disorders by less experienced physicians. We aimed to investigate (1) the application of diagnostic knowledge, (2) attitudes concerning limitations of LST, and (3) further challenging aspects in the care of patients. A vignette-based online survey with a randomized presentation of a VS, MCS, or LiS case scenario was conducted among members of the German Society for Neurology. A sample of 503 neurologists participated (response rate 16.4%). An accurate diagnosis was given by 86% of the participants. The LiS case was diagnosed more accurately (94%) than the VS case (79%) and the MCS case (87%, p < 0.001). Limiting LST for the patient was considered by 92, 91, and 84% of the participants who accurately diagnosed the VS, LiS, and MCS case (p = 0.09). Overall, most participants agreed with limiting cardiopulmonary resuscitation; a minority considered limiting artificial nutrition and hydration. Neurologists regarded the estimation of the prognosis and determination of the patients' wishes as most challenging. The majority of German neurologists accurately applied the diagnostic categories VS, MCS, and LiS to case vignettes. Their attitudes were mostly in favor of limiting life-sustaining treatment and slightly differed for MCS as compared to VS and LiS. Attitudes toward LST strongly differed according to circumstances (e.g., patient's will opposed treatment) and treatment measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La présence de fluide météorique synchrone à l'activité du détachement (Farmin, 2003 ; Mulch et al., 2007 ; Gébelin et al., 2011), implique que les zones de cisaillement sont des systèmes ouverts avec des cellules de convections à l'échelle crustale et un intense gradient géothermique au sein du détachement (Morrison et Anderson, 1998, Gottardi et al., 2011). De plus, les réactions métamorphiques liées à des infiltrations fluides dans les zones de cisaillement extensionnel peuvent influencer les paramètres rhéologiques du système (White and Knipe, 1978), et impliquer la localisation de la déformation dans la croûte. Dans ce manuscrit, deux zones de cisaillement infiltrées par des fluides météoriques sont étudiées, l'une étant largement quartzitique, et l'autre de nature granitique ; les relations entre déformation, fluides, et roches s'appuient sur des approches structurales, microstructurales, chimiques et isotopiques. L'étude du détachement du Columbia river (WA, USA) met en évidence que la déformation mylonitique se développe en un million d'années. La phase de cisaillement principal s'effectue à 365± 30°C d'après les compositions isotopiques en oxygène du quartz et de la muscovite. Ces minéraux atteignent l'équilibre isotopique lors de leur recristallisation dynamique contemporaine à la déformation. La zone de cisaillement enregistre une baisse de température, remplaçant le mécanisme de glissement par dislocation par celui de dissolution- précipitation dans les derniers stades de l'activité du détachement. La dynamique de circulation fluide bascule d'une circulation pervasive à chenalisée, ce qui engendre localement la rupture des équilibres d'échange isotopiques. La zone de cisaillement de Bitterroot (MT, USA) présente une zone mylonitique de 600m d'épaisseur, progressant des protomylonites aux ultramylonites. L'intensité de la localisation de la déformation se reflète directement sur l'hydratation des feldspaths, réaction métamorphique majeure dite de « rock softening ». Une étude sur roche totale indique des transferts de masse latéraux au sein des mylonites, et d'importantes pertes de volume dans les ultramylonites. La composition isotopique en hydrogène des phyllosilicates met en évidence la présence (1) d'une source magmatique/métamorphique originelle, caractérisée par les granodiorites ayant conservé leur foliation magmatique, jusqu'aux protomylonites, et (2) une source météorique qui tamponne les valeurs des phyllosilicates des fabriques mylonitiques jusqu'aux veines de quartz non-déformées. Les compositions isotopiques en oxygène des minéraux illustrent le tamponnement de la composition du fluide météorique par l'encaissant. Ce phénomène cesse lors du processus de chloritisation de la biotite, puisque les valeurs des chlorites sont extrêmement négatives (-10 per mil). La thermométrie isotopique indique une température d'équilibre isotopique de la granodiorite entre 600-500°C, entre 500-300°C dans les mylonites, et entre 300 et 200°C dans les fabriques cassantes (cataclasites et veines de quartz). Basé sur les résultats issus de ce travail, nous proposons un modèle général d'interactions fluide-roches-déformation dans les zones de détachements infiltrées par des fluides météoriques. Les zones de détachements évoluent rapidement (en quelques millions d'années) au travers de la transition fragile-ductile ; celle-ci étant partiellement contrôlée par l'effet thermique des circulations de fluide météoriques. Les systèmes de détachements sont des lieux où la déformation et les circulations fluides sont couplées ; évoluant rapidement vers une localisation de la déformation, et de ce fait, une exhumation efficace. - The presence of meteoric fluids synchronous with the activity of extensional detachment zones (Famin, 2004; Mulch et al., 2007; Gébelin et al., 2011) implies that extensional systems involve fluid convection at a crustal scale, which results in high geothermal gradients within active detachment zones (Morrison and Anderson, 1998, Gottardi et al., 2011). In addition, the metamorphic reactions related to fluid infiltration in extensional shear zones can influence the rheology of the system (White and Knipe, 1978) and ultimately how strain localizes in the crust. In this thesis, two shear zones that were permeated by meteoric fluids are studied, one quartzite-dominated, and the other of granitic composition; the relations between strain, fluid, and evolving rock composition are addressed using structural, microstructural, and chemical/isotopic measurements. The study of the Columbia River detachment that bounds the Kettle core complex (Washington, USA) demonstrates that the mylonitic fabrics in the 100 m thick quartzite- dominated detachment footwall developed within one million years. The main shearing stage occurred at 365 ± 30°C when oxygen isotopes of quartz and muscovite equilibrated owing to coeval deformation and dynamic recrystallization of these minerals. The detachment shear zone records a decrease in temperature, and dislocation creep during detachment shearing gave way to dissolution-precipitation and fracturing in the later stages of detachment activity. Fluid flow switched from pervasive to channelized, leading to isotopic disequilibrium between different minerals. The Bitterroot shear zone detachment (Montana, USA) developed a 600 m thick mylonite zone, with well-developed transitions from protomylonite to ultramylonite. The localization of deformation relates directly to the intensity of feldspar hydration, a major rock- softening metamorphic reaction. Bulk-rock analyses of the mylonitic series indicate lateral mass transfer in the mylonite (no volume change), and significant volume loss in ultramylonite. The hydrogen isotope composition of phyllosilicates shows (1) the presence of an initial magmatic/metamorphic source characterized by the granodiorite in which a magmatic, and gneissic (protomylonite) foliation developed, and (2) a meteoric source that buffers the values of phyllosilicates in mylonite, ultramylonite, cataclasite, and deformed and undeformed quartz veins. The mineral oxygen isotope compositions were buffered by the host-rock compositions until chloritization of biotite started; the chlorite oxygen isotope values are negative (-10 per mil). Isotope thermometry indicates a temperature of isotopic equilibrium of the granodiorite between 600-500°C, between 500-300°C in the mylonite, and between 300 and 200°C for brittle fabrics (cataclasite and quartz veins). Results from this work suggest a general model for fluid-rock-strain feedbacks in detachment systems that are permeated by meteoric fluids. Phyllosilicates have preserved in their hydrogen isotope values evidence for the interaction between rock and meteoric fluids during mylonite development. Fluid flow generates mass transfer along the tectonic anisotropy, and mylonites do not undergo significant volume change, except locally in ultramylonite zones. Hydration of detachment shear zones attends mechanical grain size reduction and enhances strain softening and localization. Self-exhuming detachment shear zones evolve rapidly (a few million years) through the transition from ductile to brittle, which is partly controlled by the thermal effect of circulating surface fluids. Detachment systems are zones in the crust where strain and fluid flow are coupled; these systems. evolve rapidly toward strain localization and therefore efficient exhumation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice. Experimentally observed water molecules facing the IBS have been used in an attempt to validate these models. However, these trials have been hindered by the limited capability of X-ray crystallography to reliably identify all water molecules of the hydration layer. Due to the strong diffraction signal from both the oxygen and deuterium atoms, neutron diffraction provides a more effective way to determine the water molecule positions (as D(2) O). Here we report the successful structure determination at 293 K of fully perdeuterated type-III AFP by joint X-ray and neutron diffraction providing a very detailed description of the protein and its solvent structure. X-ray data were collected to a resolution of 1.05 Å, and neutron Laue data to a resolution of 1.85 Å with a "radically small" crystal volume of 0.13 mm(3). The identification of a tetrahedral water cluster in nuclear scattering density maps has allowed the reconstruction of the IBS-bound ice crystal primary prismatic face. Analysis of the interactions between the IBS and the bound ice crystal primary prismatic face indicates the role of the hydrophobic residues, which are found to bind inside the holes of the ice surface, thus explaining the specificity of AFPs for ice versus water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concretes with service lives of less than 15 years and those with lives greater than 40 years were studied with petrographic microscope, scanning electron microscope, and electron microprobe to determine why these two groups of concrete exhibit such different degrees of durability under highway conditions. Coarse aggregate used in both types of concrete were from dolomite rock, but investigation revealed that dolomite aggregate in the two groups of concretes were much different in several respects. The poorly-performing aggregate is fine-grained, has numerous euhedral and subhedral dolomite rhombohedra, and has relatively high porosity. Aggregate from durable concrete is coarse-grained, with tightly interlocked crystal fabric, anhedral dolomite boundaries, and low porosity. Aggregate in short service life concrete was found to have undergone pervasive chemical reactions with the cement which produced reaction rims on the boundaries of coarse aggregate particles and in the cement region adjacent to aggregate boundaries. Textural and porosity differences are believed to be chiefly responsible for different service lives of the two groups of concrete. The basic reaction that has occurred in the short service life concretes between coarse aggregate and cement is an alkali-dolomite reaction. In the reaction dolomite from the aggregate reacts with hydroxide ions from the cement to free magnesium ions and carbonate ions, and the magnesium ions precipitate as brucite, Mg(OH)2. Simultaneously with this reaction, a second reaction occurs in which product carbonate ions react with portlandite from the cement to form calcite and hydroxide ions. Crystal growth pressures of newly formed brucite and calcite together with other processes, e.g. hydration state changes of magnesium chloride hydrates, lead to expansion of the concretes with resultant rapid deterioration. According to this model, magnesium from any source, either from reacting dolomite or from magnesium road deicers, has a major role in highway concrete deterioration. Consequently, magnesium deicers should be used with caution, and long-term testing of the effects of magnesium deicers on highway concrete should be implemented to determine their effects on durability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research project was conducted in an attempt to determine the cause of paste strength variability in Iowa fly ashes and to develop test methods to more adequately reflect fly ash physical and chemical characteristics. An extensive three year sampling and testing program was developed and initiated which incorporated fly ash from several Iowa power plants. Power plant design and operating data were collected. The variability was directly linked to power plant maintenance schedules and to sodium carbonate coal pretreatment. Fly ash physical and chemical properties can change drastically immediately before and after a maintenance outage. The concentrations of sulfate bearing minerals in the fly ash increases sharply during shutdown. Chemical, mineralogical, and physical testing indicated that the sodium, sulfate bearing minerals, lime and tricalcium aluminate contents of the fly ashes play important roles in the development of hydration reaction products in fly ash pastes. The weak pastes always contained ettringite as the major reaction product. The strong pastes contained straetlingite and monosulfoaluminate as the major reaction products along with minor amounts of ettringite. Recommendations for testing procedure changes and suggested interim test methods are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Hypercalcaemia has been shown to occur in about 20% of patients with major burns requiring prolonged intensive care unit (ICU) treatment, and it may be associated with renal failure. Having observed the early onset of hypercalcaemia, the study aimed to determine the frequency and timing of this condition in a European patient cohort. METHODS: A retrospective cohort study on a prospectively collected, computerised database of the 225 burn-injury ICU admissions between 2001 and 2007 was undertaken. The inclusion criteria included: burns &gt;20% of the body surface area (BSA) or in-hospital stay &gt;20 days. Hypercalcaemia was defined as an ionised plasma calcium (Ca(2+)) concentration &gt;1.32 mmol l(-1) (or total corrected calcium=[Ca]c&gt;2.55 mmol l(-1)). Four emblematic cases are reported in this article. RESULTS: A total of 73 patients met the inclusion criteria (age: 13-88 years, burns: 12-85% BSA): of these, 22 (30%) developed hypercalcaemia. The median time to the first hypercalcaemia value was 21 days. Only 11 patients had both high Ca(2+) and elevated [Ca]c (which remained normal in others). The risk factors of the disorder were burned surface (p=0.017) and immobilisation (fluidised bed use: p&lt;0.05, duration: p=0.02) followed by burned BSA. Acute renal failure tended to be more frequent in hypercalcaemic patients (five (23%) vs. three (6%): p=0.11), while mortality was not increased. The disorder resolved with hydration and mobilisation in most cases: pamidronate was successful in three cases that were most severe. CONCLUSION: Hypercalcaemia and associated acute renal failure occur more frequently and earlier than previously reported. Determining the ionised Ca rather than the total Ca with albumin correction enables earlier detection of hypercalcaemia. Bisphosphonates are an effective treatment option in controlling severe hypercalcaemia and preventing bone loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A work was carried out with the purpose of verifying the biochemical changes associated to soybean (Glycine max (L.) Merrill) seeds osmoconditioning. Seeds of the UFV 10, IAC 8 and Doko RC cultivars harvested at R8 development stage and submitted to different treatments were used. The biochemical evaluations were performed during seed storage, after the hydration-dehydration process. Initially, seeds were osmoconditioned in a polyethylene glycol (PEG 6000) solution, with the osmotic potential of -0.8 MPa and 20ºC, for a period of four days. After that, seeds were dried back until the initial moisture content (10-11%) and stored in natural conditions for three and six months. Two controls were used: untreated seeds (dry seeds) and water soaked seeds. Seed changes in protein and lipid, hexanal accumulation and fatty acids contents were evaluated. The results showed that seed storage under laboratory natural conditions caused reduction in protein, lipid and polyunsaturated fatty acids content and promoted hexanal production. Storage periods reduced protein levels for all treatments, however the PEG 6000 treatment showed lower protein reduction. The soybean seed storage increased hexanal production, but hexanal levels were smaller with osmoconditioning comparing to the other imbibition treatments.