955 resultados para Human androgen receptor gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following infection with cytomegalovirus, human granulocyte-macrophage progenitors carry the viral genome but fail to support productive replication. Viral transcripts arise from a region encompassing the major regulatory gene locus; however, their structure differs significantly from productive phase transcripts. One class, sense transcripts, is encoded in the same direction as productive phase transcripts but uses two novel start sites in the ie1/ie2 promoter/enhancer region. These transcripts have the potential to encode a novel 94 aa protein. The other class, antisense transcript, is unspliced and complimentary to ie1 exons 2-4, and has the potential to encode novel 154 and 152 aa proteins. Consistent with a role in latency, these transcripts are present in bone marrow aspirates from naturally infected, healthy seropositive donors but are not present in seronegative controls. Sense latent transcripts are present in a majority of seropositive individuals. Consistent with the expression of latent transcripts, antibody to the 94 aa and 152 aa proteins is detectable in the serum of seropositive individuals. Thus, latent infection by cytomegalovirus is accompanied by the presence of latency-associated transcripts and expression of immunogenic proteins. Overall, these results suggest that bone marrow-derived myeloid progenitors are an important natural site of viral latency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldose reductase (EC 1.1.1.21) catalyzes the NADPH-mediated conversion of glucose to sorbitol. The hyperglycemia of diabetes increases sorbitol production primarily through substrate availability and is thought to contribute to the pathogenesis of many diabetic complications. Increased sorbitol production can also occur at normoglycemic levels via rapid increases in aldose reductase transcription and expression, which have been shown to occur upon exposure of many cell types to hyperosmotic conditions. The induction of aldose reductase transcription and the accumulation of sorbitol, an organic osmolyte, have been shown to be part of the physiological osmoregulatory mechanism whereby renal tubular cells adjust to the intraluminal hyperosmolality during urinary concentration. Previously, to explore the mechanism regulating aldose reductase levels, we partially characterized the human aldose reductase gene promoter present in a 4.2-kb fragment upstream of the transcription initiation start site. A fragment (-192 to +31 bp) was shown to contain several elements that control the basal expression of the enzyme. In this study, we examined the entire 4.2-kb human AR gene promoter fragment by deletion mutagenesis and transfection studies for the presence of osmotic response enhancer elements. An 11-bp nucleotide sequence (TGGAAAATTAC) was located 3.7 kb upstream of the transcription initiation site that mediates hypertonicity-responsive enhancer activity. This osmotic response element (ORE) increased the expression of the chloramphenicol acetyltransferase reporter gene product 2-fold in transfected HepG2 cells exposed to hypertonic NaCl media as compared with isoosmotic media. A more distal homologous sequence is also described; however, this sequence has no osmotic enhancer activity in transfected cells. Specific ORE mutant constructs, gel shift, and DNA fragment competition studies confirm the nature of the element and identify specific nucleotides essential for enhancer activity. A plasmid construct containing three repeat OREs and a heterologous promoter increased expression 8-fold in isoosmotic media and an additional 4-fold when the transfected cells are subjected to hyperosmotic stress (total approximately 30-fold). These findings will permit future studies to identify the transcription factors involved in the normal regulatory response mechanism to hypertonicity and to identify whether and how this response is altered in a variety of pathologic states, including diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, we have shown that agonists and antagonists interact with distinct, though overlapping regions within the human progesterone receptor (hPR) resulting in the formation of structurally different complexes. Thus, a link was established between the structure of a ligand-receptor complex and biological activity. In this study, we have utilized a series of in vitro assays with which to study hPR pharmacology and have identified a third class of hPR ligands that induce a receptor conformation which is distinct from that induced by agonists or antagonists. Importantly, when assayed on PR-responsive target genes these compounds were shown to exhibit partial agonist activity; an activity that was influenced by cell context. Thus, as has been shown previously for estrogen receptor, the overall structure of the ligand-receptor complex is influenced by the nature of the ligand. It appears, therefore, that the observed differences in the activity of some PR and estrogen receptor ligands reflect the ability of the cellular transcription machinery to discriminate between the structurally different complexes that result following ligand interaction. These data support the increasingly favored hypothesis that different ligands can interact with different regions within the hormone binding domains of steroid hormone receptors resulting in different biologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleotide sequence of the human alpha-albumin gene, including 887 bp of the 5'-flanking region and 1311 bp of the 3-flanking region (24,454 in total), was determined from three overlapping lambda phage clones. The sequence spans 22,256 bp from the cap site to the polyadenylylation site, revealing a gene structure of 15 exons separated by 14 introns. The methionine initiation codon ATG is within exon 1; the termination codon TGA is within exon 14. Exon 15 is entirely untranslated and contains the polyadenylylation signal AATAAA. The deduced polypeptide chain is composed of a 21-amino-acid leader peptide, followed by 578 amino acids of the mature protein. There are seven repetitive DNA elements (Alu and Kpn) in the introns and 3-flanking region. The sizes of the 15 alpha-albumin exons match closely those of the albumin, alpha-fetoprotein, and vitamin D-binding protein genes. The exons are symmetrically placed within the three domains of the individual proteins, and they share a characteristic codon splitting pattern that is conserved among members of the gene family. The results provide strong evidence that alpha-albumin belongs to, and most likely completes with, the serum albumin gene family. Based on structural similarity, alpha-albumin appears to be most closely related to alpha-fetoprotein. The complete structure of this family of four tandemly linked genes provides a well-characterized approximately 200 kb locus in the 4q subcentromeric region of the human genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least three distinct beta-adrenergic receptor (beta-AR) subtypes exist in mammals. These receptors modulate a wide variety of processes, from development and behavior, to cardiac function, metabolism, and smooth muscle tone. To understand the roles that individual beta-AR subtypes play in these processes, we have used the technique of gene targeting to create homozygous beta 1-AR null mutants (beta 1-AR -/-) in mice. The majority of beta 1-AR -/- mice die prenatally, and the penetrance of lethality shows strain dependence. Beta l-AR -/- mice that do survive to adulthood appear normal, but lack the chronotropic and inotropic responses seen in wild-type mice when beta-AR agonists such as isoproterenol are administered. Moreover, this lack of responsiveness is accompanied by markedly reduced stimulation of adenylate cyclase in cardiac membranes from beta 1-AR -/- mice. These findings occur despite persistent cardiac beta 2-AR expression, demonstrating the importance of beta 1-ARs for proper mouse development and cardiac function, while highlighting functional differences between beta-AR subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composite transcription factor activating protein 1 (AP-1) integrates various mitogenic signals in a large number of cell types, and is therefore a major regulator of cell proliferation. In the normal human endometrium, proliferation and differentiation alternate in a cyclic fashion, with progesterone being largely implicated in the latter process. However, the effects of progesterone and the progesterone receptor (hPR) on AP-1 activity in the human endometrium are not known. To address this issue, HEC-1-B endometrial adenocarcinoma cells, which are devoid of hPR, were transfected with luciferase reporter constructs driven by two different AP-1-dependent promoters. Unexpectedly, cotransfection of hPR caused a marked induction of luciferase activity in the absence of ligand on both promoters. The magnitude of this induction was similar to that observed in response to the phorbol ester TPA. Addition of ligand reversed the stimulating effect of the unliganded hPR on AM activity in these cells. These effects were specific for hPR, and were not observed with either human estrogen receptor or human glucocorticoid receptor. Furthermore, they strictly depended on the presence of AP-1-responsive sequences within target promoters. Finally, the described effects of hPR on AP-1 activity were shown to be cell-type specific, because they could not be demonstrated in SKUT-1-B, JEG-3, and COS-7 cells. To our knowledge this is the first report of an unliganded steroid receptor stimulating AP-1 activity. This effect and its reversal in the presence of ligand suggest a novel mechanism, through which hPR can act as a key regulator of both proliferation and differentiation in the human endometrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myasthenia gravis is an autoimmune disease in which T cells specific to epitopes of the autoantigen, the human acetylcholine receptor, play a role. We identified two peptides, p195-212 and p259-271, from the alpha subunit of the receptor, which bound to major histocompatibility complex (MHC) class II molecules on antigen-presenting cells (APCs) from peripheral blood lymphocytes of myasthenia gravis patients and stimulated lymphocytes of >80% of the patients. We have prepared analogs of these myasthenogenic peptides and tested their ability to bind to MHC class II determinants and to interfere specifically with T-cell stimulation. We first determined relative binding efficiency of the myasthenogenic peptides and their analogs to APCs of patients. We found that single substituted analogs of p195-212 (Ala-207) and p259-271 (Lys-262) could bind to human MHC molecules on APCs as efficiently as the original peptides. Moreover, dual analogs containing the two single substituted analogs in one stretch (either sequentially, Ala-207/Lys-262, or reciprocally, Lys-262/Ala-207) could also bind to APCs of patients, including those that failed to bind one of the single substituted analogs. The single substituted analogs significantly inhibited T-cell stimulation induced by their respective myasthenogenic peptides in >95% of the patients. The dual analogs were capable of inhibiting stimulation induced by either of the peptides: They inhibited the response to p195-212 and p259-271 in >95% and >90% of the patients, respectively. Thus, the dual analogs are good candidates for inhibition of T-cell responses of myasthenia gravis patients and might have therapeutic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While most effects of dopamine in the brain are mediated by the D1 and D2 receptor subtypes, other members of this G protein-coupled receptor family have potentially important functions. D3 receptors belong to the D2-like subclass of dopamine receptors, activation of which inhibits adenylyl cyclase. Using targeted mutagenesis in mouse embryonic stem cells, we have generated mice lacking functional D3 receptors. A premature chain-termination mutation was introduced in the D3 receptor gene after residue Arg-148 in the second intracellular loop of the predicted protein sequence. Binding of the dopamine antagonist [125I]iodosulpride to D3 receptors was absent in mice homozygous for the mutation and greatly reduced in heterozygous mice. Behavioral analysis of mutant mice showed that this mutation is associated with hyperactivity in an exploratory test. Homozygous mice lacking D3 receptors display increased locomotor activity and rearing behavior. Mice heterozygous for the D3 receptor mutation show similar, albeit less pronounced, behavioral alterations. Our findings indicate that D3 receptors play an inhibitory role in the control of certain behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agarose-encapsulated, metabolically active, permeabilized nuclei from human hematopoietic cell lines were tested for Z-DNA formation in the beta-globin gene cluster. Biotinylated monoclonal antibodies against Z-DNA were diffused into the nuclei and cross-linked to DNA with a 10-ns laser exposure at 266 nm. Following digestion with restriction enzymes, fragments that had formed Z-DNA were isolated. Seventeen regions with Z-DNA sequence motifs in the 73-kb region were studied by PCR amplification, and five were found in the Z conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Promoter and silencer elements of the immediate 5' flanking region of the gene coding for human factor VII were identified and characterized. The major transcription start site, designated as +1, was determined by RACE (rapid amplification of cDNA ends) analysis of human liver cDNA and was found to be located 50 bp upstream from the translation start site. Two minor transcription start sites were found at bp +32 bp and +37. Progressive deletions of the 5' flanking region were fused to the chloramphenicol acetyltransferase reporter gene and transient expression in HepG2 and HeLa cells was measured. Two promoter elements that were essential for hepatocyte-specific transcription were identified. The first site, FVIIP1, located at bp -19 to +1, functioned independently of orientation or position and contributed about one-third of the promoter activity of the factor VII gene. Electrophoretic mobility-shift, competition, and anti-hepatocyte nuclear factor 4 (HNF4) antibody supershift experiments demonstrated that this site contained an HNF-4 binding element homologous to the promoters in the genes coding for factor IX and factor X. The second site, FVIIP2, located at bp -50 to -26, also functioned independent of orientation or position and contributed about two thirds of the promoter activity in the gene for factor VII. Functional assays with mutant sequences demonstrated that a 10-bp G + C-rich core sequence which shares 90% sequence identity with the prothrombin gene enhancer was essential for the function of the second site. Mobility-shift and competition assays suggested that this site also binds hepatic-specific factors as well as the transcription factor Sp1. Two silencer elements located upstream of the promoter region spanning bp -130 to -103 (FVIIS1 site) and bp -202 to -130 (FVIIS2) were also identified by reporter gene assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoprotein(a) [Lp(a)] is a lipoprotein formed by the disulfide linkage of apolipoprotein (apo) B100 of a low density lipoprotein particle to apolipoprotein(a). Prior studies have suggested that one of the C-terminal Cys residues of apo-B100 is involved in the disulfide linkage of apo-B100 to apo(a). To identify the apo-B100 Cys residue involved in the formation of Lp(a), we constructed a yeast artificial chromosome (YAC) spanning the human apo-B gene and used gene-targeting techniques to change Cys-4326 to Gly. The mutated YAC DNA was used to generate transgenic mice expressing the mutant human apo-B100 (Cys4326Gly). Unlike the wild-type human apo-B100, the mutant human apo-B100 completely lacked the ability to bind to apo(a) and form Lp(a). This study demonstrates that apo-B100 Cys-4326 is required for the assembly of Lp(a) and shows that gene targeting in YACs, followed by the generation of transgenic mice, is a useful approach for analyzing the structure of large proteins coded for by large genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The so-called very low density lipoprotein receptors (VLDLRs) are related to the LDLR gene family. So far, naturally occurring mutations have only been described for the prototype LDLR; in humans, they cause familial hypercholesterolemia. Here we describe a naturally occurring mutation in a VLDLR that causes a dramatic abnormal phenotype. Hens of the mutant restricted-ovulator chicken strain carry a single mutation, lack functional oocyte receptors, are sterile, and display severe hyperlipidemia with associated premature atherosclerosis. The mutation converts a cysteine residue into a serine, resulting in an unpaired cysteine and greatly reduced expression of the mutant avian VLDLR on the oocyte surface. Extraoocytic cells in the mutant produce higher than normal amounts of a differentially spliced form of the receptor that is characteristic for somatic cells but absent from germ cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously identified tyrosine-537 as a constitutively phosphorylated site on the human estrogen receptor (hER). A 12-amino acid phosphotyrosyl peptide containing a selected sequence surrounding tyrosine-537 was used to investigate the function of phosphotyrosine-537. The phosphotyrosyl peptide completely blocked the binding of the hER to an estrogen response element (ERE) in a gel mobility shift assay. Neither the nonphosphorylated tyrosyl peptide nor an unrelated phosphotyrosyl peptide previously shown to inhibit the signal transducers and activators of transcription factor (STAT) blocked binding of the hER to the ERE. The hER phosphotyrosyl peptide was shown by molecular sizing chromatography to dissociate the hER dimer into monomers. The hER specifically bound the 32P-labeled phosphotyrosyl peptide, indicating that the inhibition of ERE binding was caused by the phosphotyrosyl peptide binding directly to the hER and blocking dimerization. These data suggest that the phosphorylation of tyrosine-537 is a necessary step for the formation of the hER dimer. In addition, we propose that the dimerization of the hER occurs by a previously unrecognized Src homology 2 domain (SH2)-like phosphotyrosyl coupling mechanism. Consequently, the phosphotyrosyl peptide represents a class of antagonists that inhibits estrogen action by a mechanism other than interacting with the receptor's hormone binding site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retrovirus-mediated gene transfer into hematopoietic cells may provide a means of treating both inherited and acquired diseases involving hematopoietic cells. Implementation of this approach for disorders resulting from mutations affecting the beta-globin gene (e.g., beta-thalassemia and sickle cell anemia), however, has been hampered by the inability to generate recombinant viruses able to efficiently and faithfully transmit the necessary sequences for appropriate gene expression. We have addressed this problem by carefully examining the interactions between retroviral and beta-globin gene sequences which affect vector transmission, stability, and expression. First, we examined the transmission properties of a large number of different recombinant proviral genomes which vary both in the precise nature of vector, beta-globin structural gene, and locus control region (LCR) core sequences incorporated and in the placement and orientation of those sequences. Through this analysis, we identified one specific vector, termed M beta 6L, which carries both the human beta-globin gene and core elements HS2, HS3, and HS4 from the LCR and faithfully transmits recombinant proviral sequences to cells with titers greater than 10(6) per ml. Populations of murine erythroleukemia (MEL) cells transduced by this virus expressed levels of human beta-globin transcript which, on a per gene copy basis, were 78% of the levels detected in an MEL-derived cell line, Hu11, which carries human chromosome 11, the site of the beta-globin locus. Analysis of individual transduced MEL cell clones, however, indicated that, while expression was detected in every clone tested (n = 17), the levels of human beta-globin treatment varied between 4% and 146% of the levels in Hu11. This clonal variation in expression levels suggests that small beta-globin LCR sequences may not provide for as strict chromosomal position-independent expression of beta-globin as previously suspected, at least in the context of retrovirus-mediated gene transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Arg8]vasopressin (AVP) stimulates adrenocorticotropic hormone release from the anterior pituitary by acting on the V1b AVP receptor. This receptor can be distinguished from the vascular/hepatic V1a and renal V2 AVP receptors by its differential binding affinities for structural analogous of AVP. Recent studies have shown that the cloned V1a and V2 receptors are structurally related. We have isolated a clone encoding the V1b receptor from a rat pituitary cDNA library using polymerase chain reaction (PCR)-based methodology. The rat V1b receptor is a protein of 421 amino acids that has 37-50% identity with the V1a and V2 receptors. Homology is particularly high in the seven putative membrane-spanning domains of these guanine nucleotide-binding protein-coupled receptors. Expression of the recombinant receptor in mammalian cells shows the same binding specificity for AVP agonists and antagonists as the rat pituitary V1b receptor. AVP-stimulated phosphotidylinositol hydrolysis and intracellular Ca2+ mobilization in Chinese hamster ovary or COS-7 cells expressing the cloned receptor suggest second messenger signaling through phospholipase C. RNA blot analysis, reverse transcription PCR, and in situ hybridization studies reveal that V1b receptor mRNA is expressed in the majority of pituitary corticotropes as well as in multiple brain regions and a number of peripheral tissues, including kidney, thymus, heart, lung, spleen, uterus, and breast. Thus, the V1b receptor must mediate some of the diverse biological effects of AVP in the pituitary as well as other organs.