964 resultados para Human Tumor-antigens


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Major Histocompatibility Complex (MHC) comprises the most polymorphic loci in animals. MHC plays an important role during the first steps of the immune response in vertebrates. In humans, MHC molecules (also named human leukocyte antigens, HLA) were initially regarded as class I or class II molecules. Each of them, presents to different T cells subsets. MHC class I molecules, are heterodimers in which the heavy chain (alpha) has three extracellular domains, two of which (alpha 1 and alpha 2) are polymorphic and conform the antigen recognition sites (ARS). The ARS is thought to be subjected to balancing selection for variability, which is the cause of the very high polymorphism of the MHC molecules. Different pathogenic epitopes would be the evolutionary force causing balancing selection. MHC class I genes have been completely sequenced (α1 and α2 protein domains) and thoroughly studied in Gallus gallus (chicken) as well as in mammals. In fact, the MHC locus was first defined in chicken, specifically in the highly consanguineous variety „Leghorn‟. It has been found that, in the case of chickens the MHC genetic region is considerably smaller than it is in mammals (remarkably shorter introns were found in chickens), and is organized quite differently. The noteworthy presence of short introns in chickens; supported the hypothesis that chicken‟s MHC represented a „minimal essential MHC‟. Until now, it has been assumed that chicken (order Galliformes) MHC was similar to all species included in the whole class Aves...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gemcitabine is a highly potent chemotherapeutic nucleoside agent used in the treatment of several cancers and solid tumors. However, it is therapeutically limitated because of toxicity to normal cells and its rapid intracellular deamination by cytidine deaminase into the inactive uracil derivative. Modification at the 4-(N) position of gemcitabine's exocyclic amine to an -amide functionality is a well reported prodrug strategy which has been that confers a resistance to intracellular deamination while also altering pharmacokinetics of the parent drug. Coupling of gemcitabine to carboxylic acids with varying terminal moieties afforded the 4-N-alkanoylgemcitabines whereas reaction of 4-N-tosylgemcitabine with the corresponding alkyl amines gave the 4-N-alkylgemcitabines. The 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues with a terminal hydroxyl group on the 4-N-alkanoyl or 4-N-alkyl chain were efficiently fluorinated either with diethylaminosulfur trifluoride or under conditions that are compatible with the synthetic protocols for 18F labeling, such as displacement of the corresponding mesylate with KF/Kryptofix 2.2.2. The 4-N-alkanoylgemcitabine analogues displayed potent cytostatic activities against murine and human tumor cell lines with 50% inhibitory concentration (IC50) values in the range of low nM, whereas cytotoxicity of the 4-N-alkylgemcitabine derivatives were in the low to modest µM range. The cytostatic activity of the 4-N-alkanoylgemcitabines was reduced by several orders of magnitude in the 2'-deoxycytidine kinase (dCK)-deficient CEM/dCK- cell line while the 4-N-alkylgemcitabines were only lowered by 2-5 times. None of the 4-N-modified gemcitabines were found to be substrates for cytosolic dCK, however all were found to inhibit DNA synthesis. As such, the 4-N-alkanoyl gemcitabine derivatives likely need to be converted to gemcitabine prior to achieving their significant cytostatic potential, whereas the 4-N-alkylgemcitabines reach their modest activity without "measurable" conversion to gemcitabine. Thus, the 4-N-alkylgemcitabines provide valuable insight on the metabolism of 4-N-modified gemcitabine prodrugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, there is increasing use of nanomaterials in the food industry thanks to the many advantages offered and make the products that contain them more competitive in the market. Their physicochemical properties often differ from those of bulk materials, which require specialized risk assessment. This should cover the risks to the health of workers and consumers as well as possible environmental risks. The risk assessment methods must go updating due to more widespread use of nanomaterials, especially now that are making their way down to consumer products. Today there is no specific legislation for nanomaterials, but there are several european dispositions and regulations that include them. This review gives an overview of the risk assessment and the existing current legislation regarding the use of nanotechnology in the food industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mediterranean species Cynara cardunculus L. is recognized in the traditional medicine, for their hepatoprotective and choleretic effects. Biomass of C. cardunculus L. var. altilis (DC), or cultivated cardoon, may be explored not only for the production of energy and pulp fibers, but also for the extraction of bioactive compounds. The chemical characterization of extractable components, namely terpenic and phenolic compounds, may valorize the cultivated cardoon plantation, due to their antioxidant, antitumoral and antimicrobial activities. In this study, the chemical composition of lipophilic and phenolic fractions of C. cardunculus L. var. altilis (DC), cultivated in the south of Portugal (Baixo Alentejo region) was characterized in detail, intending the integral valorization of its biomass. The biological activity of cultivated cardoon extracts was evaluated in terms of antioxidant, human tumor cell antiproliferative and antibacterial effects. Gas chromatography-mass spectrometry (GC-MS) was used for the chemical analysis of lipophilic compounds. Sixty-five lipophilic compounds were identified, from which 1 sesquiterpene lactone and 4 pentacyclic triterpenes were described, for the first time, as cultivated cardoon components, such as: deacylcynaropicrin, acetates of β- and α-amyrin, lupenyl acetate and ψ-taraxasteryl acetate. Sesquiterpene lactones were the major family of lipophilic components of leaves (≈94.5 g/kg), mostly represented by cynaropicrin (≈87.4 g/kg). Pentacyclic triterpenes were also detected, in considerably high contents, in the remaining parts of cultivated cardoon, especially in the florets (≈27.5 g/kg). Taraxasteryl acetate was the main pentacyclic triterpene (≈8.9 g/kg in florets). High pressure liquid chromatography-mass spectrometry (HPLC-MS) was utilized for the chemical analysis of phenolic compounds. Among the identified 28 phenolic compounds, eriodictyol hexoside was reported for the first time as C. cardunculus L. component, and 6 as cultivated cardoon components, namely 1,4-di-O-caffeoylquinic acid, naringenin 7-O-glucoside, naringenin rutinoside, naringenin, luteolin acetylhexoside and apigenin acetylhexoside. The highest content of the identified phenolic compounds was observed in the florets (≈12.6 g/kg). Stalks outer part contained the highest hydroxycinnamic acids abundance (≈10.3 g/kg), and florets presented the highest flavonoids content (≈10.3 g/kg). The antioxidant activity of phenolic fraction was examined through 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Stalks outer part, and receptacles and bracts extracts demonstrated the highest antioxidant effect on DPPH (IC50 of 34.35 μg/mL and 35.25 μg/mL, respectively). (cont.) abstract (cont.) The DPPH scavenging effect was linearly correlated with the total contents of hydroxycinnamic acids (r = -0.990). The in vitro antiproliferative activity of cultivated cardoon lipophilic and phenolic extracts was evaluated on a human tumor cells line of triple-negative breast cancer (MDA-MB-231), one of the most refractory human cancers to conventional therapeutics. After 48 h of exposition, leaves lipophilic extract showed higher inhibitory effect (IC50 = 10.39 μg/mL) than florets lipophilic extract (IC50 = 315.22 μg/mL), upon MDA-MB-231 cellular viability. Pure compound of cynaropicrin, representative of the main compound identified in leaves lipophilic extract, also prevented the cell proliferation of MDA-MB-231 (IC50 = 17.86 μM). MDA-MB-231 cells were much more resistant to the 48 h- treatment with phenolic extracts of stalks outer part (IC50 = 3341.20 μg/mL) and florets (IC50 > 4500 μg/mL), and also with the pure compound of 1,5-di-O-caffeoylquinic acid (IC50 = 1741.69 μM). MDA-MB-231 cells were exposed, for 48 h, to the respective IC50 concentrations of leaves lipophilic extract and pure compound of cynaropicrin, in order to understand their ability in modelling cellular responses, and consequently important potentially signaling pathways for the cellular viability decrease. Leaves lipophilic extract increased the caspase-3 enzymatic activity, contrarily to pure compound of cynaropicrin. Additionally, leaves lipophilic extract and pure compound of cynaropicrin caused G2 cell cycle arrest, possibly by upregulating the p21Waf1/Cip1 and the accumulation of phospho-Tyr15-CDK1 and cyclin B1. The inhibitory effects of leaves lipophilic extract and cynaropicrin pure compound, against the MDA-MB-231 cell proliferation, may also be related to the downregulation of phospho-Ser473-Akt. The antibacterial activity of cultivated cardoon lipophilic and phenolic extracts was assessed, for the first time, on two multidrug-resistant bacteria, such as the Gram-negative Pseudomonas aeruginosa PAO1 and the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), two of the main bacteria responsible for health care-associated infections. Accordingly, the minimum inhibitory concentrations (MIC) were determined. Lipophilic and phenolic extracts of florets did not have antibacterial activity on P. aeruginosa PAO1 and MRSA (MIC > 2048 μg/mL). Leaves lipophilic extract did not prevent the P. aeruginosa PAO1 growth, but pure compound of cynaropicrin was slightly active (MIC = 2048 μg/mL). Leaves lipophilic extract and pure compound of cynaropicrin blocked MRSA growth (MIC of 1024 and 256 μg/mL, respectively). The scientific knowledge revealed in this thesis, either by the chemical viewpoint, or by the biological viewpoint, contributes for the valorization of C. cardunculus L. var. altilis (DC) biomass. Cultivated cardoon has potential to be exploited as source of bioactive compounds, in conciliation with other valorization pathways, and Portuguese traditional cheeses manufacturing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O transplante de medula óssea (TMO) é um procedimento terapêutico importante em casos relacionados à pacientes com leucemia ou linfoma. Em decorrência desse processo, uma reação conhecida como doença enxerto-versus-hospedeiro (GVHD) pode ocorrer em pacientes susceptíveis como conseqüência da presença de células imunocompetentes do doador. Entretanto, não existe um modelo para descrever completamente as ações relacionadas ao mecanismo imunológico da GVHD desde a fase que inicializa a doença até a fase efetora. O Objetivo geral deste estudo é a investigação da resposta imunológica considerando-se o sistema HLA (antígenos leucocitários humano) em pacientes que desenvolveram a GVHD em decorrência do TMO. O National Cancer Institute (NCI) – Pathway interaction Database e Reactome foram usados como bases de dados com o objetivo de se estudar a expressão de genes e vias relacionados às Classes I e II do sistema HLA (antígenos leucocitários humano). O estudo considerou a mudança de expressão de genes relacionados às 17 vias do sistema imunológico com potencialidade para se expressar em pacientes que desenvolveram a GVHD associada à TMO. Dados referentes aos transcriptomas foram obtidos utilizando-se a plataforma GPL570 Affymetrix Genoma Humano U133 Plus. A atividade relativa foi usada para determinar as alterações das vias em amostras de GVHD em relação ao controle. As análises foram realizadas utilizando-se o software Via Complex e Bioconductor. Observou-se aumento significativo da expressão de genes ralacionados às vias do sistema imune adaptativo, antígenos associados às Classe I e II do HLA, fosforilação de CD3 e CD247, sinalização dos receptores de células T em CD4+ nativas e ativação de NF-kapa β nas células B. Também observou-se alterações significativas na mudança de expressão dos genes associados às vias relacionadas à super família de moléculas B7:CD28\CTLA-4 quando comparadas ao controle. Isso pode indicar a necessidade de geração de um segundo sinal co-estimulador em GVHD, acionado pelas moléculas dessa super família. O aumento da expressão do gene CD69 nas amostras experimentais caracteriza a ativação celular e, portanto, a sinalização de estímulos em GVHD. Os achados obtidos neste estudo contribuem para melhor elucidar o mecanismo imunopatogênico associado à GVHD. P

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Além de ser o cogumelo mais consumido no mundo, Agaricus bisporus é um dos cogumelos mais ricos em ergosterol, representando esta molécula quase 90% da sua fração de esteróis. Vários estudos têm atribuído ao ergosterol diferentes bioatividades, incluindo efeitos hipocolesterolémicos semelhantes aos exibidos pelos fitoesteróis. Isto torna o ergosterol uma molécula interessante para ser estudada como composto nutracêutico. Assim, este trabalho teve como objetivo avaliar o potencial de utilização dos extratos de A. bisporus ricos em ergosterol na produção de bebidas lácteas funcionais. Para o efeito, foram realizados testes de incorporação do extrato e do ergosterol puro em iogurtes que se compararam com bebidas lácteas funcionais comerciais (aditivadas com fitoesteróis). As amostras de A. bisporus foram submetidas a uma extração assistida por ultrassons e os extratos obtidos (IEXT), bem como a molécula de ergosterol em diferentes concentrações (IERG1 e IERG2), foram incorporados em iogurtes, e comparadas com amostras controlo (amostras de iogurte sem aditivos) (ICN) e iogurtes comerciais contendo fitoesteróis (ICP). Todas as amostras foram analisadas imediatamente após a incorporação (T0), e após sete dias de armazenagem a 4°C (T1), em relação aos parâmetros nutricionais, atividade antioxidante e propriedades citotóxicas em linhas celulares tumorais humanas e numa cultura primária de células de fígado de porco (não tumoral) para avaliação da toxicidade. O teor de ergosterol incorporado na forma pura, ou presente nos extratos, foi monitorizado por HPLC-UV. Adicionalmente, foi realizado um estudo de microencapsulação utilizando a técnica de coacervação, tendo o quitosano e o isolado proteico de soro como materiais encapsulantes. Num ensaio preliminar determinou-se o pH conducente a um maior rendimento de encapsulação e, seguidamente, verificou-se a influência da razão proteína:quitosano (P/Q) e da temperatura utilizada, no rendimento de encapsulação (Y1), na eficiência de encapsulação (Y2) e na carga (teor de ergosterol nas microesferas) (Y3). Posteriormente, o estudo foi realizado baseando-se nas melhores condições para encapsular ergosterol, sendo também avaliadas as respostas Y1, Y2 e Y3. Além de ser o cogumelo mais consumido no mundo, Agaricus bisporus é um dos cogumelos mais ricos em ergosterol, representando esta molécula quase 90% da sua fração de esteróis. Vários estudos têm atribuído ao ergosterol diferentes bioatividades, incluindo efeitos hipocolesterolémicos semelhantes aos exibidos pelos fitoesteróis. Isto torna o ergosterol uma molécula interessante para ser estudada como composto nutracêutico. Assim, este trabalho teve como objetivo avaliar o potencial de utilização dos extratos de A. bisporus ricos em ergosterol na produção de bebidas lácteas funcionais. Para o efeito, foram realizados testes de incorporação do extrato e do ergosterol puro em iogurtes que se compararam com bebidas lácteas funcionais comerciais (aditivadas com fitoesteróis). As amostras de A. bisporus foram submetidas a uma extração assistida por ultrassons e os extratos obtidos (IEXT), bem como a molécula de ergosterol em diferentes concentrações (IERG1 e IERG2), foram incorporados em iogurtes, e comparadas com amostras controlo (amostras de iogurte sem aditivos) (ICN) e iogurtes comerciais contendo fitoesteróis (ICP). Todas as amostras foram analisadas imediatamente após a incorporação (T0), e após sete dias de armazenagem a 4°C (T1), em relação aos parâmetros nutricionais, atividade antioxidante e propriedades citotóxicas em linhas celulares tumorais humanas e numa cultura primária de células de fígado de porco (não tumoral) para avaliação da toxicidade. O teor de ergosterol incorporado na forma pura, ou presente nos extratos, foi monitorizado por HPLC-UV. Adicionalmente, foi realizado um estudo de microencapsulação utilizando a técnica de coacervação, tendo o quitosano e o isolado proteico de soro como materiais encapsulantes. Num ensaio preliminar determinou-se o pH conducente a um maior rendimento de encapsulação e, seguidamente, verificou-se a influência da razão proteína:quitosano (P/Q) e da temperatura utilizada, no rendimento de encapsulação (Y1), na eficiência de encapsulação (Y2) e na carga (teor de ergosterol nas microesferas) (Y3). Posteriormente, o estudo foi realizado baseando-se nas melhores condições para encapsular ergosterol, sendo também avaliadas as respostas Y1, Y2 e Y3. As bebidas funcionalizadas com o extrato (IEXT) e com ergosterol na mesma concentração existente no extrato (IERG1) revelaram uma atividade antioxidante similar às bebidas comerciais com fitoesteróis. No entanto, as bebidas com ergosterol na mesma concentração do extrato de A. bisporus e de fitoesteróis (IERG2) revelaram uma atividade antioxidante superior. Além disso, apenas IEXT, IERG1 e IERG2 apresentaram um aumento na atividade antioxidante de T0 para T1, com destaque para a atividade exibida por IERG2, significando que o ergosterol e os extratos foram capazes de proteger a bebida láctea da oxidação, aumentando a vida de prateleira do produto. IERG2 foi a amostra que revelou a maior citotoxicidade para as linhas celulares tumorais, enquanto as bebidas com fitoesteróis mostraram a menor atividade, sem diferenças significativas entre T0 e T1. Os estudos de microencapsulação revelaram ainda que a técnica de coacervação permite obter cápsulas de distintos tamanhos e que as condições ótimas do processo ocorrem a pH 5,5, com temperatura de 55ºC e razão P/Q de 0,5, com um menor rendimento de encapsulação, mas com uma maior carga em ergosterol. Este trabalho contribuiu para o estudo do potencial da utilização de extratos de A. bisporus com ergosterol no desenvolvimento de novas bebidas funcionais. Constituiu um primeiro passo que necessita de estudos subsequentes relacionados com a avaliação da viabilidade da sua utilização ao nível industrial e demonstração clara da sua bioatividade in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wild mushrooms have been extensively studied for their value as sources of high quality nutrients and of powerful physiologically bioactive compounds [1,2]. The present study was designed to evaluate the in vitro development of two wild edible mushroom species: Pleurotus eryngii (DC.) Quél. and Suillus belinii (Inzenga) Watling, by testing different solid (Potato Dextrose Agar medium –PDA and Melin-Norkans medium- MMN) and liquid culture media (Potato dextrose broth- PDB and Melin-Norkans medium- MMN). Each strain of mushroom produces a special type of mycelium and this range of characteristics varies in form, color and growth rate. S. bellinii presents a pigmented and rhizomorphic mycelia, whereas, P. eryngii has depigmented and cottony mycelia. The mycelium isolated and grown in PDA showed a faster radial growth compared to the mycelium isolated and grown in both solid and liquid incomplete MMN medium. P. eryngii exhibited a rapid growth and a higher mycelia biomass in both medium compared to S. belinii. Moreover, the obtained mycelia will be characterized in terms of well-recognized bioactive compounds namely, phenolic acids and mycosterols (mainly ergosterol), by using high performance liquid chromatography coupled to diode array and ultraviolet detectors, respectively. These compounds will be correlated to mycelia bioactivity: i) antioxidant activity, evaluated through free radicals scavenging activity, reducing power and lipid peroxidation inhibition in vitro assays; ii) anti-inflammatory activity, assessed through nitric oxide production inhibition in murine macrophages (RAW 264.7 cell line); iii) cytotoxic activity, evaluated either in human tumor cell lines (MCF-7- breast adenocarcinoma, NCIH460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma) as also in a non-tumor porcine primary liver cells culture established in-house (PLP2). Overall, our expectation is that the bioactive formulations obtained by in vitro culture can be applied as nutraceuticals or incorporated in functional foods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Naturally-occurring phytochemicals have received a pivotal attention in the last years, due to the increasing evidences of biological activities. Equisetum giganteum L., commonly known as “giant horsetail”, is a native plant from Central and South America, being largely used in dietary supplements as diuretic, hemostatic, antiinflammatory and anti-rheumatic agents [1,2]. The aim of the present study was to evaluate the antioxidant (scavenging effects on 2,2-diphenyl-1-picrylhydrazyl radicals- RSA, reducing power- RP, β-carotene bleaching inhibition- CBI and lipid peroxidation inhibition- LPI), anti-inflammatory (inhibition of NO production in lipopolysaccharidestimulated RAW 264.7 macrophages) and cytotoxic (in a panel of four human tumor cell lines: MCF-7- breast adenocarcinoma, NCI-H460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma; and in non-tumor porcine liver primary cells- PLP2) properties of E. giganteum, providing a phytochemical characterization of its extract (ethanol/water, 80:20, v/v), by using highperformance liquid chromatography coupled to diode array detection and electrospray ionisation mass spectrometry (HPLC-DAD–ESI/MS). E. giganteum presented fourteen phenolic compounds, two phenolic acids and twelve flavonol glycoside derivatives, mainly kaempferol derivatives, accounting to 81% of the total phenolic content, being kaempferol-O-glucoside-O-rutinoside, the most abundant molecule (7.6 mg/g extract). The extract exhibited antioxidant (EC50 values = 123, 136, 202 and 57.4 μg/mL for RSA, RP, CBI and LPI, respectively), anti-inflammatory (EC50 value = 239 μg/mL) and cytotoxic (GI50 values = 250, 258, 268 and 239 μg/mL for MCF-7, NCI-H460, HeLa and HepG2, respectively) properties, which were positively correlated with its concentration in phenolic compounds. Furthermore, up to 400 μg/mL, it did not revealed toxicity in non-tumor liver cells. Thus, this study highlights the potential of E. giganteum extracts as rich sources of phenolic compounds that can be used in the food, pharmaceutical and cosmetic fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To investigate the phytochemistry and cytotoxic activity of stem bark extracts from Genus dolichocarpa and Duguetia chrysocarpa - two species of the Annonaceae family. Methods: The crude ethanol bark extracts (EtOH) of the plants were obtained by maceration. The crude extracts were suspended in a mixture of methanol (MeOH) and water (H2O) (proportion 3:7 v/v) and partitioned with hexane, chloroform (CHCl3) and ethyl acetate (AcOEt) in ascending order of polarity to obtain the respective fractions. The extracts were evaluated on thin layer chromatography (TLC) plates of silica gel to highlight the main groups of secondary metabolites. Cytotoxicity was tested against human tumor cell lines - OVCAR-8 (ovarian), SF-295 (brain) and HCT-116 (colon) - using 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results: The screening results demonstrated that all the extracts were positive for the presence of flavonoids and tannins. The presence of alkaloids also was detected in some extracts. The hexane extract of A. dolichocarpa showed the strongest cytotoxicity against HCT-116 with cell growth inhibition of 89.02 %. Conclusion: The findings demonstrate for the first time the cytotoxic activity of the extracts of A. dolichocarpa and D. chrysocarpa, thus providing some evidence that plants of the Annonaceae family are a source of active secondary metabolites with cytotoxic activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Human gene MAGE-1 encodes tumor-specific antigens that are recognized on melanoma cells by autologous cytolytic T lymphocytes. This gene is expressed in a significant proportion of tumors of various histological types, but not in normal tissues except male germ-line cells. We reported previously that reporter genes driven by the MAGE-1 promoter are active not only in the tumor cell lines that express MAGE-1 but also in those that do not. This suggests that the critical factor causing the activation of MAGE-1 in certain tumors is not the presence of the appropriate transcription factors. The two major MAGE-1 promoter elements have an Ets binding site, which contains a CpG dinucleotide. We report here that these CpG are demethylated in the tumor cell lines that express MAGE-1, and are methylated in those that do not express the gene. Methylation of these CpG inhibits the binding of transcription factors, as seen by mobility shift assay. Treatment with the demethylating agent 5-aza-2'-deoxycytidine activated gene MAGE-1 not only in tumor cell lines but also in primary fibroblasts. Finally, the overall level of CpG methylation was evaluated in 20 different tumor cell lines. It was inversely correlated with the expression of MAGE-1. We conclude that the activation of MAGE-1 in cancer cells is due to the demethylation of the promoter. This appears to be a consequence of a genome-wide demethylation process that occurs in many cancers and is correlated with tumor progression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immunotherapy is a promising new treatment for patients with advanced prostate and ovarian cancer, but its application is limited by the lack of suitable target antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTL). Human kallikrein 4 (KLK4) is a member of the kallikrein family of serine proteases that is significantly overexpressed in malignant versus healthy prostate and ovarian tissue, making it an attractive target for immunotherapy. We identified a naturally processed, HLA-A*0201-restricted peptide epitope within the signal sequence region of KLK4 that induced CTL responses in vitro in most healthy donors and prostate cancer patients tested. These CTL lysed HLA-A*0201+ KLK4 + cell lines and KLK4 mRNA-transfected monocyte-derived dendritic cells. CTL specific for the HLA-A*0201-restricted KLK4 peptide were more readily expanded to a higher frequency in vitro compared to the known HLA-A*0201-restricted epitopes from prostate cancer antigens; prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP). These data demonstrate that KLK4 is an immunogenic molecule capable of inducing CTL responses and identify it as an attractive target for prostate and ovarian cancer immunotherapy.