963 resultados para Histology and histochemistry of digestive tract
Resumo:
Enterococci are versatile Gram-positive bacteria that can survive under extreme conditions. Most enterococci are non-virulent and found in the gastrointestinal tract of humans and animals. Other strains are opportunistic pathogens that contribute to a large number of nosocomial infections globally. Epidemiological studies demonstrated a direct relationship between the density of enterococci in surface waters and the risk of swimmer-associated gastroenteritis. The distribution of infectious enterococcal strains from the hospital environment or other sources to environmental water bodies through sewage discharge or other means, could increase the prevalence of these strains in the human population. Environmental water quality studies may benefit from focusing on a subset of Enterococcus spp. that are consistently associated with sources of faecal pollution such as domestic sewage, rather than testing for the entire genus. E. faecalis and E. faecium are potentially good focal species for such studies, as they have been consistently identified as the dominant Enterococcus spp. in human faeces and sewage. On the other hand enterococcal infections are predominantly caused by E. faecalis and E. faecium. The characterisation of E. faecalis and E. faecium is important in studying their population structures, particularly in environmental samples. In developing and implementing rapid, robust molecular genotyping techniques, it is possible to more accurately establish the relationship between human and environmental enterococci. Of particular importance, is to determine the distribution of high risk enterococcal clonal complexes, such as E. faecium clonal complex 17 and E. faecalis clonal complexes 2 and 9 in recreational waters. These clonal complexes are recognized as particularly pathogenic enterococcal genotypes that cause severe disease in humans globally. The Pimpama-Coomera watershed is located in South East Queensland, Australia and was investigated in this study mainly because it is used intensively for agriculture and recreational purposes and has a strong anthropogenic impact. The primary aim of this study was to develop novel, universally applicable, robust, rapid and cost effective genotyping methods which are likely to yield more definitive results for the routine monitoring of E. faecalis and E. faecium, particularly in environmental water sources. To fullfill this aim, new genotyping methods were developed based on the interrogation of highly informative single nucleotide polymorphisms (SNPs) located in housekeeping genes of both E. faecalis and E. faecium. SNP genotyping was successfully applied in field investigations of the Coomera watershed, South-East Queensland, Australia. E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles respectively. This study showed the high longitudinal diversity of E. faecalis and E. faecium over a period of two years, and both human-related and human-specific SNP profiles were identified. Furthermore, 4.25% of E. faecium strains isolated from water was found to correspond to the important clonal complex-17 (CC17). Strains that belong to CC17 cause the majority of hospital outbreaks and clinical infections globally. Of the six sampling sites of the Coomera River, Paradise Point had the highest number of human-related and human-specific E. faecalis and E. faecium SNP profiles. The secondary aim of this study was to determine the antibiotic-resistance profiles and virulence traits associated with environmental E. faecalis and E. faecium isolates compared to human pathogenic E. faecalis and E. faecium isolates. This was performed to predict the potential health risks associated with coming into contact with these strains in the Coomera watershed. In general, clinical isolates were found to be more resistant to all the antibiotics tested compared to water isolates and they harbored more virulence traits. Multi-drug resistance was more prevalent in clinical isolates (71.18% of E. faecalis and 70.3 % of E. faecium) compared to water isolates (only 5.66 % E. faecium). However, tetracycline, gentamicin, ciprofloxacin and ampicillin resistance was observed in water isolates. The virulence gene esp was the most prevalent virulence determinant observed in clinical isolates (67.79% of E. faecalis and 70.37 % of E. faecium), and this gene has been described as a human-specific marker used for microbial source tracking (MST). The presence of esp in water isolates (16.36% of E. faecalis and 19.14% of E. faecium) could be indicative of human faecal contamination in these waterways. Finally, in order to compare overall gene expression between environmental and clinical strains of E. faecalis, a comparative gene hybridization study was performed. The results of this investigation clearly demonstrated the up-regulation of genes associated with pathogenicity in E. faecalis isolated from water. The expression study was performed at physiological temperatures relative to ambient temperatures. The up-regulation of virulence genes demonstrates that environmental strains of E. faecalis can pose an increased health risk which can lead to serious disease, particularly if these strains belong to the virulent CC17 group. The genotyping techniques developed in this study not only provide a rapid, robust and highly discriminatory tool to characterize E. faecalis and E. faecium, but also enables the efficient identification of virulent enterococci that are distributed in environmental water sources.
Resumo:
A PCR assay, using three primer pairs, was developed for the detection of Ureaplasma urealyticum, parvo biovar, mba types 1, 3, and 6, in cultured clinical specimens. The primer pairs were designed by using the polymorphic base positions within a 310- to 311-bp fragment of the 5* end and upstream control region of the mba gene. The specificity of the assay was confirmed with reference serovars 1, 3, 6, and 14 and by the amplified-fragment sizes (81 bp for mba 1, 262 bp for mba 3, and 193 bp for mba 6). A more sensitive nested PCR was also developed. This involved a first-step PCR, using the primers UMS-125 and UMA226, followed by the nested mba-type PCR described above. This nested PCR enabled the detection and typing of small numbers of U. urealyticum cells, including mixtures, directly in original clinical specimens. By using random amplified polymorphic DNA (RAPD) PCR with seven arbitrary primers, we were also able to differentiate the two biovars of U. urealyticum and to identify 13 RAPD-PCR subtypes. By applying these subtyping techniques to clinical samples collected from pregnant women, we established that (i) U. urealyticum is often a persistent colonizer of the lower genital tract from early midtrimester until the third trimester of pregnancy, (ii) mba type 6 was isolated significantly more often (P 5 0.048) from women who delivered preterm than from women who delivered at term, (iii) no particular ureaplasma subtype(s) was associated with placental infections and/or adverse pregnancy outcomes, and (iv) the ureaplasma subtypes most frequently isolated from women were the same subtypes most often isolated from infected placentas.
Resumo:
Background A large animal model is required for assessment of minimally invasive, tissue engineering based approaches to thoracic spine fusion, with relevance to deformity correction surgery for human adolescent idiopathic scoliosis. Here we develop a novel open mini–thoracotomy approach in an ovine model of thoracic interbody fusion which allows assessment of various fusion constructs, with a focus on novel, tissue engineering based interventions. Methods The open mini-thoracotomy surgical approach was developed through a series of mock surgeries, and then applied in a live sheep study. Customized scaffolds were manufactured to conform with intervertebral disc space clearances required of the study. Twelve male Merino sheep aged 4 to 6 years and weighing 35 – 45 kg underwent the abovementioned procedure and were divided into two groups of six sheep at survival timelines of 6 and 12 months. Each sheep underwent a 3-level discectomy (T6/7, T8/9 and T10/11) with randomly allocated implantation of a different graft substitute at each of the three levels; (i) polycaprolactone (PCL) based scaffold plus 0.54μg rhBMP-2, (ii) PCL-based scaffold alone or (iii) autograft. The sheep were closely monitored post- operatively for signs of pain (i.e. gait abnormalities/ teeth gnawing/ social isolation). Fusion assessments were conducted post-sacrifice using Computed Tomography and hard-tissue histology. All scientific work was undertaken in accordance with the study protocol has been approved by the Institute's committee on animal research. Results. All twelve sheep were successfully operated on and reached the allotted survival timelines, thereby demonstrating the feasibility of the surgical procedure and post-operative care. There were no significant complications and during the post-operative period the animals did not exhibit marked signs of distress according to the described assessment criteria. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL-based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluation of the respective groups. Conclusion. This novel open mini-thoracotomy surgical approach to the ovine thoracic spine represents a safe surgical method which can reproducibly form the platform for research into various spine tissue engineered constructs (TEC) and their fusion promoting properties.
Resumo:
Epithelial-to-mesenchymal transition (EMT) processes endow epithelial cells with enhanced migratory/invasive properties and are therefore likely to contribute to tumor invasion and metastatic spread. Because of the difficulty in following EMT processes in human tumors, we have developed and characterized an animal model with transplantable human breast tumor cells (MDA-MB-468) uniquely showing spontaneous EMT events to occur. Using vimentin as a marker of EMT, heterogeneity was revealed in the primary MDA-MB-468 xenografts with vimentin-negative and vimentin-positive areas, as also observed on clinical human invasive breast tumor specimens. Reverse transcriptase-PCR after microdissection of these populations from the xenografts revealed EMT traits in the vimentin-positive zones characterized by enhanced 'mesenchymal gene' expression (Snail, Slug and fibroblast-specific protein-1) and diminished expression of epithelial molecules (E-cadherin, ZO-3 and JAM-A). Circulating tumor cells (CTCs) were detected in the blood as soon as 8 days after s.c. injection, and lung metastases developed in all animals injected as examined by in vivo imaging analyses and histology. High levels of vimentin RNA were detected in CTCs by reverse transcriptase-quantitative PCR as well as, to a lesser extent, Snail and Slug RNA. Von Willebrand Factor/vimentin double immunostainings further showed that tumor cells in vascular tumoral emboli all expressed vimentin. Tumoral emboli in the lungs also expressed vimentin whereas macrometastases displayed heterogenous vimentin expression, as seen in the primary xenografts. In conclusion, our data uniquely demonstrate in an in vivo context that EMT occurs in the primary tumors, and associates with an enhanced ability to intravasate and generate CTCs. They further suggest that mesenchymal-to-epithelial phenomena occur in secondary organs, facilitating the metastatic growth.
Resumo:
Between 1984 and 1997, six cases of urothelial cancer and 14 cases of renal cell cancer occurred in a group of 500 underground mining workers in the copper-mining industry of the former German Democratic Republic, with high exposures to explosives containing technical dinitrotoluene. Exposure durations ranged from 7 to 37 years, and latency periods ranged from 21 to 46 years. The incidences of both urothelial and renal cell tumors in this group were much higher than anticipated on the basis of the cancer registers of the German Democratic Republic by factors of 4.5 and 14.3, respectively. The cancer cases and a representative group of 183 formerly dinitrotoluene- exposed miners of this local industry were interviewed for their working history and grouped into four exposure categories. This categorization of the 14 renal cell tumor cases revealed no dose-dependency concerning explosives in any of the four exposure categories and was similar to that of the representative group of employees, whereas the urothelial tumor cases were predominantly confined to the high-exposure categories. Furthermore, all identified tumor patients were genotyped by polymerase chain reaction, using lymphocyte DNA, regarding their genetic status of the polymorphic xenobiotic metabolizing enzymes, including the N-acetyltransferase 2 and the glutathione-S-transferases M1 and T1. This genotyping revealed remarkable distributions only for the urothelial tumor cases, who were exclusively identified as 'slow acetylators.' This points to the possibility of human carcinogenicity of dinitrotoluene, with regard to the urothelium as the target tissue.
Resumo:
Technical dinitrotoluene (DNT) is a mixture of 2,4- and 2,6-DNT. In humans, industrial or environmental exposure can occur orally, by inhalation, or by skin contact. The classification of DNT as an 'animal carcinogen' is based on the formation of malignant tumors in kidneys, liver, and mammary glands of rats and mice. Clear signs of toxic nephropathy were found in rats dosed with DNT, and the concept was derived of an interrelation between renal toxicity and carcinogenicity. Recent data point to the carcinogenicity of DNT on the urinary tract of exposed humans. Between 1984 and 1997, 6 cases of urothelial cancer and 14 cases of renal cell cancer were diagnosed in a group of 500 underground mining workers in the copper mining industry of the former GDR and having high exposures to explosives containing technical DNT. The incidences of both urothelial and renal cell tumors in this group were 4.5 and 14.3 times higher, respectively, than anticipated on the basis of the cancer registers of the GDR. The genotyping of all identified tumor patients for the polymorphic enzymes NAT2, GSTM1, and GSTT1 identified the urothelial tumor cases as exclusively 'slow acetylates'. A group of 161 miners highly exposed to DNT was investigated for signs of subclinical renal damage. The exposures were categorized semi-quantitatively into 'low', 'medium', 'high', and 'very high'. A straight dose-dependence of the excretion of urinary biomarker proteins with the ranking of exposure was seen. Biomarker excretion (alpha1-microglobulin, glutathione S-transferases alpha and pi) indicated that DNT-induced damage was directed toward the tubular system. New data on DNT-exposed humans appear consistent with the concept of cancer initiation by DNT isomers and the subsequent promotion of renal carcinogenesis by selective damage to the proximal tubule. The differential pathways of metabolic activation of DNT appear to apply to the proximal tubule of the kidney and to the urothelium of the renal pelvis and lower urinary tract as target tissues of carcinogenicity.
Resumo:
Automatic labeling of white matter fibres in diffusion-weighted brain MRI is vital for comparing brain integrity and connectivity across populations, but is challenging. Whole brain tractography generates a vast set of fibres throughout the brain, but it is hard to cluster them into anatomically meaningful tracts, due to wide individual variations in the trajectory and shape of white matter pathways. We propose a novel automatic tract labeling algorithm that fuses information from tractography and multiple hand-labeled fibre tract atlases. As streamline tractography can generate a large number of false positive fibres, we developed a top-down approach to extract tracts consistent with known anatomy, based on a distance metric to multiple hand-labeled atlases. Clustering results from different atlases were fused, using a multi-stage fusion scheme. Our "label fusion" method reliably extracted the major tracts from 105-gradient HARDI scans of 100 young normal adults. © 2012 Springer-Verlag.
Resumo:
Background Genomic data are lacking for many allergen sources. To circumvent this limitation, we implemented a strategy to reveal the repertoire of pollen allergens of a grass with clinical importance in subtropical regions, where an increasing proportion of the world's population resides. Objective We sought to identify and immunologically characterize the allergenic components of the Panicoideae Johnson grass pollen (JGP; Sorghum halepense). Methods The total pollen transcriptome, proteome, and allergome of JGP were documented. Serum IgE reactivities with pollen and purified allergens were assessed in 64 patients with grass pollen allergy from a subtropical region. Results Purified Sor h 1 and Sor h 13 were identified as clinically important allergen components of JGP with serum IgE reactivity in 49 (76%) and 28 (43.8%), respectively, of patients with grass pollen allergy. Within whole JGP, multiple cDNA transcripts and peptide spectra belonging to grass pollen allergen families 1, 2, 4, 7, 11, 12, 13, and 25 were identified. Pollen allergens restricted to subtropical grasses (groups 22-24) were also present within the JGP transcriptome and proteome. Mass spectrometry confirmed the IgE-reactive components of JGP included isoforms of Sor h 1, Sor h 2, Sor h 13, and Sor h 23. Conclusion Our integrated molecular approach revealed qualitative differences between the allergenic components of JGP and temperate grass pollens. Knowledge of these newly identified allergens has the potential to improve specific diagnosis and allergen immunotherapy treatment for patients with grass pollen allergy in subtropical regions and reduce the burden of allergic respiratory disease globally.
Resumo:
Background: Gastroesophageal reflux disease (GORD) can cause respiratory disease in children from recurrent aspiration of gastric contents. GORD can be defined in several ways and one of the most common method is presence of reflux oesophagitis. In children with GORD and respiratory disease, airway neutrophilia has been described. However, there are no prospective studies that have examined airway cellularity in children with GORD but without respiratory disease. The aims of the study were to compare (1) BAL cellularity and lipid laden macrophage index (LLMI) and, (2) microbiology of BAL and gastric juices of children with GORD (G+) to those without (G-). Methods: In 150 children aged <14-years, gastric aspirates and bronchoscopic airway lavage (BAL) were obtained during elective flexible upper endoscopy. GORD was defined as presence of reflux oesophagitis on distal oesophageal biopsies. Results: BAL neutrophil% in G- group (n = 63) was marginally but significantly higher than that in the G+ group (n = 77), (median of 7.5 and 5 respectively, p = 0.002). Lipid laden macrophage index (LLMI), BAL percentages of lymphocyte, eosinophil and macrophage were similar between groups. Viral studies were negative in all, bacterial cultures positive in 20.7% of BALs and in 5.3% of gastric aspirates. BAL cultures did not reflect gastric aspirate cultures in all but one child. Conclusion: In children without respiratory disease, GORD defined by presence of reflux oesophagitis, is not associated with BAL cellular profile or LLMI abnormality. Abnormal microbiology of the airways, when present, is not related to reflux oesophagitis and does not reflect that of gastric juices. © 2005 Chang et al; licensee BioMed Central Ltd.
Resumo:
The family Myrtaceae in Chile comprises 26 species in 10 genera. The species occur in a diverse rangeof environments including humid temperate forests, swamps, riparian habitats and coastal xeromorphicshrublands. Most of these species are either endemic to Chile or endemic to the humid temperate forestsof Chile and Argentina. Although many taxa have very restricted distributions and are of conservationconcern, little is known about their biology and vegetative anatomy. In this investigation, we describe andcompare the leaf anatomy and micromorphology of all Chilean Myrtaceae using standard protocols forlight and scanning electron microscopy. Leaf characters described here are related to epidermis, cuticle,papillae, stomata, hairs, mesophyll, crystals, secretory cavities and vascular system. Nearly all the specieshave a typical mesophytic leaf anatomy, but some species possess xerophytic characters such as doubleepidermis, hypodermis, pubescent leaves, thick adaxial epidermis and straight epidermal anticlinal walls,which correlate with the ecological distribution of the species. This is the first report on leaf anatomyand micromorphology in most of these species. We identified several leaf characters with potential tax-onomic and ecological significance. Some combinations of leaf characters can reliably delimitate genera,while others are unique to some species. An identification key using micromorphological and anatomicalcharacters is provided to distinguish genera and species.
Resumo:
Near infrared (NIR) spectroscopy, usually in reflectance mode, has been applied to the analysis of faeces to measure the concentrations of constituents such as total N, fibre, tannins and delta C-13. In addition, an unusual and exciting application of faecal NIR [F.NIR] analyses is to directly predict attributes of the diet of herbivores such as crude protein and fibre contents, proportions of plant species and morphological components, diet digestibility and voluntary DM intake. This is an unusual application of NIR spectroscopy insofar as the spectral measurements are made, not on the material of interest [i.e. the diet), but on a derived material (i.e. faeces). Predictions of diet attributes from faecal spectra clearly depend on there being sufficient NIR spectral information in the diet residues present in faeces to describe the diet, although endogenous components of faeces such as undigested debris of micro-organisms from the rumen and Large intestine and secretions into the gastrointestinal tract wilt also contribute spectral information. Spectra of forage and of faeces derived from the forage are generally similar and the observed differences are principally in the spectral regions associated with constituents of forages known to be of low, or of high, digestibility. Some diet components (for example, ureal which are likely to be entirely digested apparently cannot be predicted from faecal NIR spectra because they cannot contribute to faecal spectra except through modifying the microbial and endogenous components. The errors and robustness of F.NIR calibrations to predict the crude protein concentration and digestibility of the diet of herbivores are generally comparable with those to directly predict the same attributes in forage from NIR spectra of the forage. Some attributes of the animal, such as species, gender, pregnancy status and parasite burden have been successfully discriminated into classes based on their faecal NIR spectra. Such discrimination was likely associated with differences in the diet selected and/or differences in the metabolites excreted in the faeces. NIR spectroscopy of faeces has usually involved scanning dried and ground samples in monochromators in the 400-2500nm or 1100-2500nm ranges. Results satisfactory for the purpose have also been reported for dried and ground faeces scanned using a diode array instrument in the 800-1700nm range and for wet faeces and slurries of excreta scanned with monochromators. Chemometric analysis of faecal spectra has generally used the approaches established for forage analysis. The capacity to predict many attributes of the diet, and some aspects of animal physiology, from NIR spectra of faeces is particularly useful to study the quality and quantity of the diet selected by both domestic and feral grazing herbivores and to enhance production and management of both herbivores and their grazing environment.
Resumo:
Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 35 +/- A 2A degrees C) had no effect on the cellular stages in root formation of the Slash x Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25A degrees C and slowest at 15A degrees C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (> 80%) but reduced to 59% at 35A degrees C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.
Resumo:
Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 352C) had no effect on the cellular stages in root formation of the Slash * Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25C and slowest at 15C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (>80%) but reduced to 59% at 35C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.
Resumo:
Endometriosis is a common gynaecological disease with symptoms of pelvic pain and infertility which affects 7-10% of women in their reproductive years. Activation of an oncogenic allele of Kirsten rat sarcoma viral oncogene homologue (KRAS) in the reproductive tract of mice resulted in the development of endometriosis. We hypothesized that variation in KRAS may influence risk of endometriosis in humans. Thirty tagSNPs spanning a region of 60.7 kb across the KRAS locus were genotyped using iPLEX chemistry on a MALDI-TOF MassARRAY platform in 959 endometriosis cases and 959 unrelated controls, and data were analysed for association with endometriosis. Genotypes were obtained for most individuals with a mean completion rate of 99.1%. We identified six haplotype blocks across the KRAS locus in our sample. There were no significant differences between cases and controls in the frequencies of individual single-nucleotide polymorphisms (SNPs) or haplotypes. We also developed a rapid method to screen for 11 common KRAS and BRAF mutations on the Sequenom MassARRAY system. The assay detected all mutations previously identified by direct sequencing in a panel of positive controls. No germline variants for KRAS or BRAF were detected. Our results demonstrate that any risk of endometriosis in women because of common variation in KRAS must be very small.