947 resultados para High-rise apartment buildings -- Energy conservation -- Malaysia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an experimental measurement campaign of urban microclimate for a building complex located in London, the United Kingdom. The experiment was carried out between 19 July and 16 August, 2010 at the Elephant & Castle site. The wind and solar energy distributions within the London urban experimental site were assessed in detail for their potential use in areas of high-rise urban building complexes. The climatic variables were measured at every five minutes for the air temperature, the wind speed and direction, the air humidity and the global solar radiation for a period of four weeks. The surface temperatures were also measured on the asphalt road, pavement and building walls at every hour for the first week of the campaign period. The effect of the building complex on the urban microclimate has been analyzed in terms of the solar radiation, the air temperature and velocity. The information and observation obtained from this campaign will be useful to the analysis of renewable energy implementations in dense urban situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid rates of urbanization have resulted into increased concerns of urban environment. Amongst them, wind and thermal comfort levels for pedestrians have attracted research interest. In this regards, urban wind environment is seen as a crucial components that can lead to improved thermal comfort levels for pedestrian population. High rise building in modern urban setting causes high levels of turbulence that renders discomfort to pedestrians. Additionally, a higher frequency of high ris e buildings at a particular region acts as a shield against the wind flow to the lower buildings beyond them resulting into higher levels of discomfort to users or residents. Studies conducted on developing wind flow models using Computational Fluid Dynami cs (CFD) simulations have revealed improvement in interval to height ratios can results into improved wind flow within the simulation grid. However, high value and demand for land in urban areas renders expansion to be an impractical solution. Nonetheless, innovative utilization of architectural concepts can be imagined to improve the pedestrian comfort levels through improved wind permeability. This paper assesses the possibility of through-building gaps being a solution to improve pedestrian comfort levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely accepted that there is a gap between design energy and real world operational energy consumption. The behaviour of occupants is often cited as an important factor influencing building energy performance. However, its consideration, both during design and operation, is overly simplistic, often assuming a direct link between attitudes and behaviour. Alternative models of decision making from psychology highlight a range of additional influential factors and emphasise that occupants do not always act in a rational manner. Developing a better understanding of occupant decision making could help inform office energy conservation campaigns as well as models of behaviour employed during the design process. This paper assesses the contribution of various behavioural constructs on small power consumption in offices. The method is based upon the Theory of Planned Behaviour (TPB) which assumes that intention is driven by three factors: attitude, subjective norms, and perceived behavioural control, but we also consider a fourth construct: habit measured through the Self- Report Habit Index (SRHI). A questionnaire was issued to 81 participants in two UK offices. Questionnaire results for each behavioural construct were correlated against each participant’s individual workstation electricity consumption. The intentional processes proposed by TPB could not account for the observed differences in occupants’ interactions with small power appliances. Instead, occupants were interacting with small power “automatically”, with habit accounting for 11% of the variation in workstation energy consumption. The implications for occupant behaviour models and employee engagement campaigns are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy used in buildings is a major contributor to Australia’s energy consumption and associated environmental impacts. The advent of complex glazing systems such as double glazing, particularly in northern America and Europe, has partially closed a weak thermal link in the building envelope. In milder climates, however, building envelope features may not be as effective in life cycle energy terms, i.e. including the embodied energy of their manufacture. A net energy analysis compares the savings in operational energy to the additional requirements for embodied energy, in terms of the energy payback period and energy return on investment. The effectiveness of double glazing is determined for an Australian residential building. A wide range of building operation regimes was simulated. These results support the principle of installing double glazing in residential buildings in Melbourne, Australia, at least in terms of net primary energy savings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humla Province is a remote mountainous region of northwest Nepal. The climate is harsh and the local people are extremely poor. Most people endure a subsistence culture, living in traditional housing. Energy for cooking and heating comes from fuelwood, supplies of which are diminishing. In order to improve the indoor environment and reduce fuelwood use, smokeless stoves are being introduced to replace the open fire in Humli homes. There is some concern, however, that comfort levels may not be as acceptable with these stoves. The aim of this research was therefore to investigate ways in which the comfort levels in traditional Humli housing might be improved using simple and low cost strategies. Temperature data was recorded in four rooms of a traditional Humli home over a 12-day period and used with fuelwood data to validate a TRNSYS simulation model of the house. This model was then used to evaluate the impact on comfort levels in the house of various energy conservation strategies using PMV and PPD indicators. As a single strategy, it was found that reducing infiltration of outside air was likely to be more effective than increasing the insulation level in the ceilings. The most successful strategy, however, was the creation of sunspaces at the entrances to the living rooms. This strategy increased average internal temperatures by 1.7 and 2.3 °C. In combination with increased insulation levels, the sunspaces reduced comfort dissatisfaction levels by over 50%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buildings have a significant impact on the environment due to the energy required for the manufacture of construction materials. The method of assessing the energy embodied in a product is known as energy analysis. Detailed office building embodied energy case studies are very rare. However, there is evidence to suggest that the energy requirements for the construction phase of commercial buildings, including the energy embodied in materials, is a significant component of the life cycle energy requirements. This thesis sets out to examine the current state of energy analysis, determine the national average energy intensities < i.e. embodied energy rates < for building materials and assess the significance of using national average energy intensities for the energy analysis of a case study office building. Likely ranges of variation in the building material embodied energy rates from the national averages are estimated and the resulting distribution for total embodied energy in the case study building simulated. Strategies for improving the energy analysis methods and data are suggested. Detailed energy analysis is shown to be a useful indicative method of quantifying the energy required for the construction of buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis demonstrates a strong relationship between life cycle energy and life cycle cost based on an analysis of thirty recent Melbourne buildings. Embodied energy (initial cost) can be reliably modelled by construction cost (initial cost) and thus be readily available as early design advice, enabling more sustainable development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The threat of dangerous levels of global warming demand that we significantly reduce carbon emissions over the coming decades. Globally, carbon emissions from all energy end-uses in buildings in 2004 were estimated to be 8.6 Gt CO2 or almost one quarter of total CO2 emissions (IPCC 2007). In Australia, nearly ten per cent of greenhouse gases come from the residential sector (DCCEE 2012). However, it is not merely the operation of the buildings that contributes to their CO2 emissions, but the energy used over their entire life cycle. Research has demonstrated that the embodied energy of the construction materials used in a building can sometimes equal the operational energy over the building’s entire lifetime (Crawford 2011). Therefore the materials used in construction need to be carefully considered. Conventional building materials not only represent high levels of embodied energy but also use resources that are finite and are being depleted. Renewable building materials are those materials that can be regenerated quickly enough to remove the threat of depletion and in theory their production could be carbon-neutral. To assess the potential for renewable building materials to reduce the embodied energy content of residential construction, the embodied energy of a small residential building has been determined. Wherever possible, the conventional construction materials were then replaced by commercially-available renewable building materials. The embodied energy of the building was then recalculated. The analysis showed that the embodied energy of the building could be reduced from 7.5 GJ per m2 to 5.4 GJ per m2 i.e. by 28%. The commercial availability of renewable materials, however, was a limiting factor and indicated that the industry is not yet well positioned to embrace this strategy to reduce embodied energy of construction. While some conventional building materials could readily be replaced, in many instances a renewable substitute could not be found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote communities in the high altitude areas of Nepal suffer both chronic and acute malnutrition. This is due to a shortage of arable land and a harsh climate. For seven months of the year, the harvesting of fresh vegetables is almost impossible. Greenhouse technology, if appropriate for the location and its community, can extend the growing season considerably. Experience in the Ladakh region of India indicates that year-round cropping is possible in greenhouses in cold mountainous areas. A simple 50-m2 greenhouse has been constructed in Simikot, the main town of Humla, northwest Nepal. This paper describes the evaluation of the thermal performance of that greenhouse. Both measurement and simulation were used in the evaluation. Measurements during the winter of 2006-7 indicate that the existing design is capable of producing adequate growing conditions for some vegetable crops, but that improvements are required if crops like tomatoes are to be grown successfully. Options to improve the thermal performance of the greenhouse have been investigated by simulation. Improvements to the building envelope such as wall insulation, double-glazing and using a thermal screen were simulated with a validated TRNSYS model. The impact of the addition of nighttime heat from internal passive solar water collectors was also predicted. The simulations indicate that the passive solar water collectors would raise the average greenhouse air temperature by 2.5°C and the overnight air temperature would increase by 4.0°C. When used in combination, overnight temperatures are predicted to by almost 7°C higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy consumption data are required to perform analysis, modelling, evaluation, and optimisation of energy usage in buildings. While a variety of energy consumption data sets have been examined and reported in the literature, there is a lack of a comprehensive categorisation and analysis of the available data sets. In this study, an overview of energy consumption data of buildings is provided. Three common strategies for generating energy consumption data, i.e., measurement, survey, and simulation, are described. A number of important characteristics pertaining to each strategy and the resulting data sets are discussed. In addition, a directory of energy consumption data sets of buildings is developed. The data sets are collected from either published papers or energy related organisations. The main contributions of this study include establishing a resource pertaining to energy consumption data sets and providing information related to the characteristics and availability of the respective data sets; therefore facilitating and promoting research activities in energy consumption data analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistically significant association between energy consumption and economic growth is now well established in the literature. However, it still remains an unsettled issue whether economic growth is the cause or effect of energy consumption. The importance of identifying the direction of causality emanates from its relevance in national policy-making issues regarding energy conservation. Energy conservationissue is more important when energy acts as a contributing factor in economic growth than when it is used as a result of higher economic growth. In this backdrop, it is justified to search causal relationship between energy consumption and national output (GDP) of those countries that are expected to have higher energy consumption in future. Evidence shows that countries classified as non-OECD Asia will have the highest growth in energy consumption (3.7 percent) over the period 2003-2030. This forecasted energy consumption in these countries will have significant policy implication in the area of energy conservation. Hence, the present paper attempts to identify the direction of causality between energy consumption and output in the context of six major energy dependent non-OECD Asian countries.However, since the traditional bivariate approach suffers from omitted variable problems (Stern 1993, Masih and Masih, 1996 and Asafu-Adjaye, 2000), this paper employs a trivariate demand side approach consisting of energy consumption, income and prices. The countries selected for this purpose are Bangladesh, China, India, Malaysia, Pakistan and Thailand. Moreover, according to the Energy Information Administration (EIA) data of 2005, these six countries contribute 81.35% of the energyconsumption by all non-OECD Asian countries (aggregate energy consumption of 2005 by all non-OECD Asian countries is 113.60 quadrillion BTU while for these six countries alone the consumption is 92.42 quadrillion BTU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 This article examines the short- and long-run causal relationship between energy consumption and GDP of six emerging economies of Asia. Based on cointegration and vector error correction modeling the empirical results show that there exists unidirectional short- and long-run causality running from energy consumption to GDP for China, uni-directional short-run causality from output to energy consumption for India, whilst bi-directional short-run causality for Thailand. Neutrality between energy consumption and income is found for Indonesia, Malaysia and Philippines. Both the generalized variance decompositions and impulse response functions confirm the direction of causality. These findings have important policy implications for the countries concerned. The results suggest that while India may directly initiate energy conservation measures, China and Thailand may opt for a balanced combination of alternative polices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In five male cirrhotic patients (Child A) and in four age- and sex-matched healthy control subjects, whole-body protein turnover was measured using a single oral dose of N-15-glycine as a tracer and urinary ammonia as end product. Subjects were studied in the fasting and feeding state, with different levels of protein and energy intake. The patients were underweight and presented lower plasma transthyretin and retinol-binding protein levels. When compared with controls, the kinetic studies showed patients to be hypometabolic in the fasting (Do) state and with the control diet [D-1 = (0.85 g of protein/154 kJ). kg(-1). day(-1)]. However, when corrected by body weight, the kinetic differences between groups disappeared, whereas the N-retention in the feeding state showed better results for the patients due mainly to their efficient breakdown decrease. When fed high-level protein or energy diets [D-2 = (0.9 g protein/195 kJ) and D-3 = (1.56 g protein/158 kJ). kg(-1). day(-1)], the patients showed D-0 = D-1 = D-2 < D-3 for N-flux and (D-0 = D-1) < D-3 (D-2 is intermediary) for protein synthesis. Thus, the present data suggest that the remaining mass of the undernourished mild cirrhotic patients has fairly good protein synthesis activity and also that protein, rather than energy intake, would be the limiting factor for increasing their whole-body protein synthesis.