837 resultados para High-fat diets
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The hypotheses that postexercise replenishment of intramyocellular lipids (IMCL) is enhanced by endurance training and that it depends on fat intake were tested. Trained and untrained subjects exercised on a treadmill for 2 h at 50% peak oxygen consumption, reducing IMCL by 26-22%. During recovery, they were fed 55% (high fat) or 15% (low fat) lipid energy diets. Muscle substrate stores were estimated by (1)H (IMCL)- and (13)C (glycogen)-magnetic resonance spectroscopy in tibialis anterior muscle before and after exercise. Resting IMCL content was 71% higher in trained than untrained subjects and correlated significantly with glycogen content. Both correlated positively with indexes of insulin sensitivity. After 30 h on the high-fat diet, IMCL concentration was 30-45% higher than preexercise, whereas it remained 5-17% lower on the low-fat diet. Training status had no significant influence on IMCL replenishment. Glycogen was restored within a day with both diets. We conclude that fat intake postexercise strongly promotes IMCL repletion independently of training status. Furthermore, replenishment of IMCL can be completed within a day when fat intake is sufficient.
Resumo:
BACKGROUND: High sugar and fat intakes are known to increase intrahepatocellular lipids (IHCLs) and to cause insulin resistance. High protein intake may facilitate weight loss and improve glucose homeostasis in insulin-resistant patients, but its effects on IHCLs remain unknown. OBJECTIVE: The aim was to assess the effect of high protein intake on high-fat diet-induced IHCL accumulation and insulin sensitivity in healthy young men. DESIGN: Ten volunteers were studied in a crossover design after 4 d of either a hypercaloric high-fat (HF) diet; a hypercaloric high-fat, high-protein (HFHP) diet; or a control, isocaloric (control) diet. IHCLs were measured by (1)H-magnetic resonance spectroscopy, fasting metabolism was measured by indirect calorimetry, insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and plasma concentrations were measured by enzyme-linked immunosorbent assay and gas chromatography-mass spectrometry; expression of key lipogenic genes was assessed in subcutaneous adipose tissue biopsy specimens. RESULTS: The HF diet increased IHCLs by 90 +/- 26% and plasma tissue-type plasminogen activator inhibitor-1 (tPAI-1) by 54 +/- 11% (P < 0.02 for both) and inhibited plasma free fatty acids by 26 +/- 11% and beta-hydroxybutyrate by 61 +/- 27% (P < 0.05 for both). The HFHP diet blunted the increase in IHCLs and normalized plasma beta-hydroxybutyrate and tPAI-1 concentrations. Insulin sensitivity was not altered, whereas the expression of sterol regulatory element-binding protein-1c and key lipogenic genes increased with the HF and HFHP diets (P < 0.02). Bile acid concentrations remained unchanged after the HF diet but increased by 50 +/- 24% after the HFHP diet (P = 0.14). CONCLUSIONS: Protein intake significantly blunts the effects of an HF diet on IHCLs and tPAI-1 through effects presumably exerted at the level of the liver. Protein-induced increases in bile acid concentrations may be involved. This trial was registered at www.clinicaltrials.gov as NCT00523562.
Resumo:
Fat mobilization to meet energy requirements during early lactation is inevitable because of insufficient feed intake, but differs greatly among high-yielding dairy cows. Therefore, we studied milk production, feed intake, and body condition as well as metabolic and endocrine changes in high-yielding dairy cows to identify variable strategies in metabolic and endocrine adaptation to overcome postpartum metabolic load attributable to milk production. Cows used in this study varied in fat mobilization around calving, as classified by mean total liver fat concentrations (LFC) postpartum. German Holstein cows (n=27) were studied from dry off until d 63 postpartum in their third lactation. All cows were fed the same total mixed rations ad libitum during the dry period and lactation. Plasma concentrations of metabolites and hormones were measured in blood samples taken at d 56, 28, 15, and 5 before expected calving and at d 1 and once weekly up to d 63 postpartum. Liver biopsies were taken on d 56 and 15 before calving, and on d 1, 14, 28, and 49 postpartum to measure LFC and glycogen concentrations. Cows were grouped accordingly to mean total LFC on d 1, 14, and 28 in high, medium, and low fat-mobilizing cows. Mean LFC (±SEM) differed among groups and were 351±14, 250±10, and 159±9 mg/g of dry matter for high, medium, and low fat-mobilizing cows, respectively, whereas hepatic glycogen concentrations postpartum were the highest in low fat-mobilizing cows. Cows in the low group showed the highest dry matter intake and the least negative energy balance postpartum, but energy-corrected milk yield was similar among groups. The decrease in body weight postpartum was greatest in high fat-mobilizing cows, but the decrease in backfat thickness was greatest in medium fat-mobilizing cows. Plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate were highest around calving in high fat-mobilizing cows. Plasma triglycerides were highest in the medium group and plasma cholesterol concentrations were lowest in the high group at calving. During early lactation, the decrease in plasma glucose concentrations was greatest in the high group, and plasma insulin concentrations postpartum were highest in the low group. The revised quantitative insulin sensitivity check index values decreased during the transition period and postpartum, and were highest in the medium group. Plasma cortisol concentrations during the transition period and postpartum period and plasma leptin concentrations were highest in the medium group. In conclusion, cows adapted differently to the metabolic load and used variable strategies for homeorhetic regulation of milk production. Differences in fat mobilization were part of these strategies and contributed to the individual adaptation of energy metabolism to milk production.
Resumo:
We hypothesized that feeding pregnant rats with a high-fat diet would increase both circulating 17β-estradiol (E2) levels in the dams and the risk of developing carcinogen-induced mammary tumors among their female offspring. Pregnant rats were fed isocaloric diets containing 12% or 16% (low fat) or 43% or 46% (high fat) of calories from corn oil, which primarily contains the n − 6 polyunsaturated fatty acid (PUFA) linoleic acid, throughout pregnancy. The plasma concentrations of E2 were significantly higher in pregnant females fed a high n − 6 PUFA diet. The female offspring of these rats were fed with a laboratory chow from birth onward, and when exposed to 7,12-dimethylbenz(a)anthracene had a significantly higher mammary tumor incidence (60% vs. 30%) and shorter latency for tumor appearance (11.4 ± 0.5 weeks vs. 14.2 ± 0.6 weeks) than the offspring of the low-fat mothers. The high-fat offspring also had puberty onset at a younger age, and their mammary glands contained significantly higher numbers of the epithelial structures that are the targets for malignant transformation. Comparable changes in puberty onset, mammary gland morphology, and tumor incidence were observed in the offspring of rats treated daily with 20 ng of E2 during pregnancy. These data, if extrapolated to humans, may explain the link among diet, early puberty onset, mammary parenchymal patterns, and breast cancer risk, and indicate that an in utero exposure to a diet high in n − 6 PUFA and/or estrogenic stimuli may be critical for affecting breast cancer risk.
Resumo:
Human and animal studies suggest that obesity in adulthood may have its origins partly during prenatal development. One of the underlying causes of obesity is the perturbation of hypothalamic mechanisms controlling appetite. We determined mRNA levels of genes that regulate appetite, namely neuropeptide Y (NPY), pro-opiomelanocortin (POMC) and the leptin receptor isoform Ob-Rb, in the hypothalamus of adult mouse offspring from pregnant dams fed a protein-restricted diet, and examined whether mismatched post-weaning high-fat diet altered further expression of these gene transcripts. Pregnant MF1 mice were fed either normal protein (C, 18% casein) or protein-restricted (PR, 9% casein) diet throughout pregnancy. Weaned offspring were fed to adulthood a high-fat (HF; 45% kcal fat) or standard chow (21% kcal fat) diet to generate the C/HF, C/C, PR/HF and PR/C groups. Food intake and body weight were monitored during this period. Hypothalamic tissues were collected at 16 weeks of age for analysis of gene expression by real time RT-PCR. All HF-fed offspring were observed to be heavier vs. C groups regardless of the maternal diet during pregnancy. In the PR/HF males, but not in females, daily energy intake was reduced by 20% vs. the PR/C group (p <0.001). In PR/HF males, hypothalamic mRNA levels were lower vs. the PR/C group for NPY (p <0.001) and Ob-Rb (p <0.05). POMC levels were similar in all groups. In females, mRNA levels for these transcripts were similar in all groups. Our results suggest that adaptive changes during prenatal development in response to maternal dietary manipulation may have long-term sex-specific consequences on the regulation of appetite and metabolism following post-weaning exposure to an energy-rich nutritional environment. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Post-traumatic arthritis (PTA) is arthritis that develops following joint injury, including meniscus and ligament tears. Current treatments for PTA range from over-the-counter medication to knee replacement; however, in the presence of obesity, the levels of pro-inflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-α,) are more elevated than in non-obese individuals. The role of fatty acids, obesity, and PTA has been examined, with omega-3 fatty acids showing promise as an anti-inflammatory after injury due to its ability to suppress IL-1 and TNF-α. Due to the difficulty in switching patients’ diets, an alternative solution to increasing omega-3 levels needs to be developed. The Fat-1 enzyme, an omega-3 desaturase that has the ability to convert omega-6 to omega-3 fatty acids, may be a good target for increasing the omega-3 levels in the body.
In the first study, we examined whether Fat-1 transgenic mice on a high-fat diet would exhibit lower levels of PTA degeneration following the destabilization of the medial meniscus (DMM). Both male and female Fat-1 and wild-type (WT) littermates were put on either a control diet (10% fat) or an omega-6 rich high-fat diet (60% fat) and underwent DMM surgery. Arthritic changes were examined 12 weeks post-surgery. Fat-1 mice on both the control and high-fat diet showed protection from PTA-related degeneration, while WT mice showed severe arthritic changes. These findings suggest that the omega-6/omega-3 ratio plays an important role in reducing PTA following injury, and demonstrates the potential therapeutic benefit of the Fat-1 enzyme in preventing PTA in both normal and obese patients following acute injury.
Following this, we needed to establish a translatable delivery mechanism for getting the Fat-1 enzyme, which is not present in mammalian cells, into patients. In the second study, we examined whether anti-inflammatory gene delivery of the Fat-1 enzyme would prevent PTA following DMM surgery. In vitro testing of both lentivirus (LV) and adeno-associated virus (AAV) was completed to confirm functionality and conformation of the Fat-1 enzyme after transduction. Male WT mice were placed on an omega-6 rich high-fat diet (60% fat) and underwent DMM surgery; either local or systemic AAV injections of the Fat-1 enzyme or Luciferase, a vector control, were given immediately following surgery. 12 weeks post-surgery, arthritic changes were assessed. The systemic administration of the Fat-1 enzyme showed protection from synovial inflammation and osteophyte formation, while administration of Luciferase did not confer protection. These findings suggest the utility of gene therapy to deliver the Fat-1 enzyme, which has potential as a therapeutic for injured obese patients for the prevention of PTA.
Resumo:
Objetivou-se avaliar o efeito do nível de concentrado e dos sais de cálcio de ácidos graxos (SCAG) sobre o desempenho e qualidade da carne de novilhos terminados em confinamento. Sessenta novilhos Nelore e cruza Nelore foram divididos em quatro grupos e confinados por um período de 85 dias com as seguintes dietas: (BC) 46,7% de concentrado; (BC-SCAG) dieta BC acrescida de 3% de SCAG; (AC) dieta contendo 76,6% de concentrado e (AC-SCAG) dieta AC com 3% de SCAG. O nível de concentrado não influenciou o ganho médio diário, a espessura de gordura subcutânea e a área de olho de lombo, mas as dietas AC aumentaram o peso (P=0,0011) e o rendimento (P<0,0001) de carcaça, além da força de cisalhamento (P=0,0438). Animais alimentados com as dietas AC apresentaram maior peso (P=0,0011) e rendimento (P<0,0001) de carcaça em relação aos animais do tratamento BC. Os SCAG aumentaram o ganho de peso em dietas de AC (P=0,0311), mas sem efeito nas dietas BC. Animais tratados com as dietas contendo SCAG apresentaram maior peso (P=0,0133) e rendimento de carcaça (P=0,0160), mas sem diferenças na espessura de gordura subcutânea, área de olho de lombo e força de cisalhamento. Dietas de alto concentrado e os SCAG melhoraram as características quantitativas (peso e rendimento) das carcaças de bovinos na fase de terminação e podem ser utilizadas pelos produtores como alternativa para melhorar a eficiência do sistema de produção.
Resumo:
A proporção ideal dos macronutrientes em dietas de emagrecimento é atualmente bastante discutida. Existem evidências de que dietas com maior proporção de proteína aumentam a perda de peso e de gordura corporal e diminuem a perda de massa corporal magra durante o emagrecimento. Todavia, os mecanismos responsáveis por estes efeitos não estão totalmente esclarecidos. Além disso, existem poucas conclusões a respeito dos possíveis efeitos colaterais dessas dietas na função renal e no estado nutricional relativo ao cálcio. Assim, este artigo objetiva trazer informações atuais sobre os efeitos de dietas ricas em proteína na perda de peso e na composição corporal e dos mecanismos envolvidos, bem como seus efeitos na função renal e no estado nutricional relativo ao cálcio.
Resumo:
Objective: To evaluate the role oral administration of S-nitroso-N-acetylcysteine (SNAC), a NO donor drug, in the prevention and reversion of NASH in two different animal models. Methods: NASH was induced in male ob/ob mice by methionine-choline deficient (MCD) and high-fat (H) diets. Two animal groups received or not SNAC orally for four weeks since the beginning of the treatment. Two other groups were submitted to MCD and H diets for 60 days receiving SNAC only from the 31(st) to the 60(th) day. Results: SNAC administration inhibited the development of NASH in all groups, leading to a marked decrease in macro and microvacuolar steatosis and in hepatic lipid peroxidation in the MCD group. SNAC treatment reversed the development of NASH in animals treated for 60 days with MCD or H diets, which received SNAC only from the 31(st) to the 60(th) day. Conclusions: Oral administration of SNAC markedly inhibited and reversed NASH induced by MCD and H diets in ob/ob mice.
Resumo:
Rafacho A, Cestari TM, Taboga SR, Boschero AC, Bosqueiro JR. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets. Am J Physiol Endocrinol Metab 296: E681-E689, 2009. First published January 21, 2009; doi:10.1152/ajpendo.90931.2008.-Activation of insulin signaling and cell cycle intermediates is required for adult beta-cell proliferation. Here, we report a model to study beta-cell proliferation in living rats by administering three different doses of dexamethasone (0.1, 0.5, and 1.0 mg/kg ip, DEX 0.1, DEX 0.5, and DEX 1.0, respectively) for 5 days. Insulin sensitivity, insulin secretion, and histomorphometric data were investigated. Western blotting was used to analyze the levels of proteins related to the control of beta-cell growth. DEX 1.0 rats, which present moderate hyperglycemia and marked hyperinsulinemia, exhibited a 5.1-fold increase in beta-cell proliferation and an increase (17%) in beta-cell size, with significant increase in beta-cell mass, compared with control rats. The hyperinsulinemic but euglycemic DEX 0.5 rats also showed a significant 3.6-fold increase in beta-cell proliferation. However, DEX 0.1 rats, which exhibited the lowest degree of insulin resistance, compensate for insulin demand by improving only islet function. Activation of the insulin receptor substrate 2/phosphatidylinositol 3-kinase/serine-threoninekinase/ribosomalprotein S6 kinase pathway, as well as protein retinoblastoma in islets from DEX 1.0 and DEX 0.5, but not in DEX 0.1, rats was also observed. Therefore, increasing doses of dexamethasone induce three different degrees of insulin requirement in living rats, serving as a model to investigate compensatory beta-cell alterations. Augmented beta-cell mass involves beta-cell hyperplasia and, to a lower extent, beta-cell hypertrophy. We suggest that alterations in circulating insulin and, to a lesser extent, glucose levels could be the major stimuli for beta-cell proliferation in the dexamethasone-induced insulin resistance.
Resumo:
Os doentes com diabetes mellitus tipo 2 apresentam predisposição para a retenção de sódio e são frequentemente hipertensos. No entanto, os mecanismos implicados na dificuldade do rim diabético em mobilizar o sódio são, ainda, pouco compreendidos. Os peptídeos da família das guanilinas estão envolvidos na regulação do transporte de electrólitos e água nos epitélios intestinal e renal, através da activação do receptor guanilato ciclase-C (GC-C) e subsequente libertação intracelular de GMPc. O objectivo do presente estudo foi a avaliação da actividade do sistema dos peptídeos das guanilinas (SPG) e do seu papel na regulação do balanço de sódio num modelo animal de diabetes tipo 2. Ratinhos machos C57BL/6 foram submetidos a uma dieta com alto teor de gordura e rica em hidratos de carbono simples (ratinhos diabéticos) ou a uma dieta normal (ratinhos controlo). A expressão renal e intestinal da guanilina (GN), uroguanilina (UGN) e do receptor GC-C assim como os níveis de GMPc na urina e plasma foram avaliados nos ratinhos controlo e diabéticos, durante a ingestão de dietas normo (NS) e hiper-salina (HS). Nos ratinhos diabéticos, durante a dieta NS verificou-se um aumento significativo da pressão arterial que foi acompanhado de redução da expressão do ARNm da GN, UGN e do GC-C no intestino e de aumento da expressão de ARNm da UGN no rim. A dieta HS induziu um aumento da expressão do ARNm da UGN no jejuno dos ratinhos controlo mas não nos diabéticos. Os ratinhos diabéticos apresentaram níveis urinários de GMPc inferiores aos controlos, em condições de dieta NS. Em conclusão, os nossos resultados sugerem que na diabetes tipo 2 ocorre uma redução da actividade intestinal do SPG que é acompanhada por um aumento compensatório da actividade renal do SPG. A diminuição da actividade do SPG intestinal na diabetes tipo 2 deve-se não só a uma redução da expressão dos peptídeos GN e UGN, mas também a uma redução da expressão do seu receptor, GC-C. Estes resultados sugerem que o SPG pode contribuir para a sensibilidade ao sódio na diabetes.
Resumo:
Myocardial perfusion-gated-SPECT (MP-gated-SPECT) imaging often shows radiotracer uptake in abdominal organs. This accumulation interferes frequently with qualitative and quantitative assessment of the infero-septal region of myocardium. The objective of this study is to evaluate the effect of ingestion of different fat content on the reduction of extra-myocardial uptake and to improve MP-gated-SPECT image quality. In this study, 150 patients (65 ^ 18 years) who were referred for MP-gated-SPECT underwent a 1-day-protocol including imaging after stress (physical or pharmacological) and resting conditions. All patients gave written informed consent. Patients were subdivided into five groups: GI, GII, GIII, GIV and GV. In the first four groups, patients ate two chocolate bars with different fat content. Patients in GV – control group (CG) – had just water. Uptake indices (UI) of myocardium (M)/liver(L) and M/stomach–proximal bowel(S) revealed lower UI of M/S at rest in all groups. Both stress and rest studies using different food intake indicate that patients who ate chocolate with different fat content showed better UI of M/L than the CG. The UI of M/L and M/S of groups obtained under physical stress are clearly superior to that of groups obtained under pharmacological stress. These differences are only significant in patients who ate high-fat chocolate or drank water. The analysis of all stress studies together (GI, GII, GIII and GIV) in comparison with CG shows higher mean ranks of UI of M/L for those who ate high-fat chocolate. After pharmacological stress, the mean ranks of UI of M/L were higher for patients who ate high- and low-fat chocolate. In conclusion, eating food with fat content after radiotracer injection increases, respectively, the UI of M/L after stress and rest in MP-gated-SPECT studies. It is, therefore, recommended that patients eat a chocolate bar after radiotracer injection and before image acquisition.
Resumo:
Background: The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferatoractivated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.Objectives: In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.Methods: As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.Results: DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.Conclusion: These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds. Editor's SummaryDiethylhexyl phthalate (DEHP) is an industrial plasticizer used in cosmetics, medical devices, food packaging, and other applications. Evidence that DEHP metabolites can activate peroxisome proliferatoractivated receptors (PPARs) involved in fatty acid oxidation (PPARalpha and PPARbeta) and adiposite function and insulin resistance (PPARgamma) has raised concerns about potential effects of DEHP on metabolic homeostasis. In rodents, PPARalpha activation also induces hepatic peroxisome proliferation, but this response to PPARalpha activation is not observed in humans. Feige et al. (p. 234) evaluated systemic and metabolic consequences of high-dose oral DEHP in combination with a high-fat diet in wild-type mice and genetically engineered mouse PPAR models. The authors report that mice exposed to DEHP gained less weight than controls, without modifying their feeding behavior; they also exhibited lower triglyceride levels, smaller adipocytes, and improved glucose tolerance compared with controls. These effects, which were observed in mice fed both high-fat and standard diets, appeared to be mediated by PPARalpha-dependent activation of hepatic fatty acid catabolism without apparent involvement of PPARbeta or PPARgamma. However, mouse models that expressed human (versus mouse) PPARalpha tended to gain more weight on a high-fat diet than their DHEP-unexposed counterparts. The authors conclude that findings support species-specific metabolic effects of DEHP mediated by PPARalpha activation.
Resumo:
Background & aims: High protein diets have been shown to improve hepatic steatosis in rodent models and in high-fat fed humans. We therefore evaluated the effects of a protein supplementation on intrahepatocellular lipids (IHCL), and fasting plasma triglycerides in obese non diabetic women.Methods: Eleven obese women received a 60 g/day whey protein supplement (WPS) for 4-weeks, while otherwise nourished on a spontaneous diet, IHCL concentrations, visceral body fat, total liver volume (MR), fasting total-triglyceride and cholesterol concentrations, glucose tolerance (standard 75 g OGTT), insulin sensitivity (HOMA IS index), creatinine clearance, blood pressure and body composition (bio-impedance analysis) were assessed before and after 4-week WPS.Results: IHCL were positively correlated with visceral fat and total liver volume at inclusion. WPS decreased significantly IHCL by 20.8 +/- 7.7%, fasting total TG by 15 +/- 6.9%, and total cholesterol by 7.3 +/- 2.7%. WPS slightly increased fat free mass from 54.8 +/- 2.2 kg to 56.7 +/- 2.5 kg, p = 0.005). Visceral fat, total liver volume, glucose tolerance, creatinine clearance and insulin sensitivity were not changed.Conclusions: WPS improves hepatic steatosis and plasma lipid profiles in obese non diabetic patients, without adverse effects on glucose tolerance or creatinine clearance. Trial Number: NCT00870077, ClinicalTrials.gov (C) 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.