983 resultados para High heating rates


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study is to characterise and compare fast pyrolysis product yields from straw, high yielding perennial grasses and hardwoods. Feedstocks selected for this study include: wheat straw (Triticum aestivum), switch grass (Panicum virgatum), miscanthus (Miscanthus x giganteus), willow short rotation coppice (Salix viminalis) and beech wood (Fagus sylvatica). The experimental work is divided into two sections: analytical (TGA and Py-GC-MS) and laboratory scale processing using a continuously fed bubbling fluidized bed reactor with a capacity of up to 1 kg/h. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) has been used to quantify pyrolysis products and simulate fast pyrolysis heating rates, in order to study potential key light and medium volatile decomposition products found in these feedstocks. Py-GC-MS quantification results show that the highest yields of furfural (0.57 wt.%), 2-furanmethanol (0.18 wt.%), levoglucosan (0.73 wt.%), 1,2-benzenediol (0.27 wt.%) and 2-methoxy-4-vinylphenol (0.38 wt.%) were found in switch grass, and that willow SRC produced the highest yield of phenol (0.33 wt.%). The bio-oil higher heating value was highest for switch grass (22.3 MJ/kg). Water content within the bio-oil is highest in the straw and perennial grasses and lowest in the hardwood willow SRC. The high bio-oil and char heating value and low water content found in willow SRC, makes this crop an attractive energy feedstock for fast pyrolysis processing, if the associated production costs and harvest yields can be maintained at current reported values. The bio-oil from switch grass has the highest potential for the production of high value chemicals. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The projected decline in fossil fuel availability, environmental concerns, and security of supply attract increased interest in renewable energy derived from biomass. Fast pyrolysis is a possible thermochemical conversion route for the production of bio-oil, with promising advantages. The purpose of the experiments reported in this thesis was to extend our understanding of the fast pyrolysis process for straw, perennial grasses and hardwoods, and the implications of selective pyrolysis, crop harvest and storage on the thermal decomposition products. To this end, characterisation and laboratory-scale fast pyrolysis were conducted on the available feedstocks, and their products were compared. The variation in light and medium volatile decomposition products was investigated at different pyrolysis temperatures and heating rates, and a comparison of fast and slow pyrolysis products was conducted. Feedstocks from different harvests, storage durations and locations were characterised and compared in terms of their fuel and chemical properties. A range of analytical (e.g. Py-GC-MS and TGA) and processing equipment (0.3 kg/h and 1.0 kg/h fast pyrolysis reactors and 0.15 kg slow pyrolysis reactor) was used. Findings show that the high bio-oil and char heating value, and low water content of willow short rotation coppice (SRC) make this crop attractive for fast pyrolysis processing compared to the other investigated feedstocks in this project. From the analytical sequential investigation of willow SRC, it was found that the volatile product distribution can be tailored to achieve a better final product, by a variation of the heating rate and temperature. Time of harvest was most influential on the fuel properties of miscanthus; overall the late harvest produced the best fuel properties (high HHV, low moisture content, high volatile content, low ash content), and storage of the feedstock reduced the moisture and acid content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activated carbon is generated from various waste biomass sources like rice straw, wheat straw, wheat straw pellets, olive stones, pistachios shells, walnut shells, beech wood and hardcoal. After drying the biomass is pyrolysed in the temperature range of 500-600 °C at low heating rates of 10 K/min. The activation of the chars is performed as steam activation at temperatures between 800 °C and 900 °C. Both the pyrolysis and activation experiments were run in lab-scale facilities. It is shown that nut shells provide high active surfaces of 1000-1300 m/g whereas the active surface of straw matters does hardly exceed 800 m/g which might be a result of the high ash content of the straws and the slightly higher carbon content of the nut shells. The active surface is detected by BET method. Besides the testing of a many types of biomass for the suitability as base material in the activated carbon production process, the experiments allow for the determination of production parameters like heating rate and pyrolysis temperature, activation time and temperature as well as steam flux which are necessary for the scale up of the process chain. © 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increases in the production rate of cosmogenic radionuclides associated with geomagnetic excursions have been used as global tie-points for correlation between records of past climate from marine and terrestrial archives. We have investigated the relative timing of variations in 10Be production rate and the corresponding palaeomagnetic signal during one of the largest Pleistocene excursions, the Iceland Basin (IB) event (ca. 190 kyr), as recorded in two marine sediment cores (ODP Sites 1063 and 983) with high sedimentation rates. Variations in 10Be production rate during the excursion were estimated by use of 230Thxs normalized 10Be deposition rates and authigenic 10Be/9Be. Resulting 10Be production rates are compared with high-resolution records of geomagnetic field behaviour acquired from the same discrete samples. We find no evidence for a significant lock-in depth of the palaeomagnetic signal in these high sedimentation-rate cores. Apparent lock-in depths in other cores may sometimes be the result of lower sample resolution. Our results also indicate that the period of increased 10Be production during the IB excursion lasted longer and, most likely, started earlier than the corresponding palaeomagnetic anomaly, in accordance with previous observations that polarity transitions occur after periods of reduced geomagnetic field intensity prior to the transition. The lack of evidence in this study for a significant palaeomagnetic lock-in depth suggests that there is no systematic offset between the 10Be signal and palaeomagnetic anomalies associated with excursions and reversals, with significance for the global correlation of climate records from different archives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dutra, R. P. S.; Varela,M. L.; Nascimento, R. M. ; Gomes, U. U. ; Martinelli1, A. E. ; Paskocimas, C. A. Estudo comparativo da queima rápida com a queima tradicional nas propriedades de materiais cerâmicos de base argilosa. Cerâmica [online]. 2009, vol.55, n.333, pp. 100-105. ISSN 0366-6913. doi:Disponivem em: . Acesso em: 04 out. 2010.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanocomposite energetics are a relatively new class of materials that combine nanoscale fuels and oxidizers to allow for the rapid release of large amounts of energy. In thermite systems (metal fuel with metal oxide oxidizer), the use of nanomaterials has been illustrated to increase reactivity by multiple orders of magnitude as a result of the higher specific surface area and smaller diffusion length scales. However, the highly dynamic and nanoscale processes intrinsic to these materials, as well as heating rate dependencies, have limited our understanding of the underlying processes that control reaction and propagation. For my dissertation, I have employed a variety of experimental approaches that have allowed me to probe these processes at heating rates representative of free combustion with the goal of understanding the fundamental mechanisms. Dynamic transmission electron microscopy (DTEM) was used to study the in situ morphological change that occurs in nanocomposite thermite materials subjected to rapid (10^11 K/s) heating. Aluminum nanoparticle (Al-NP) aggregates were found to lose their nanostructure through coalescence in as little as 10 ns, which is much faster than any other timescale of combustion. Further study of nanoscale reaction with CuO determined that a condensed phase interfacial reaction could occur within 0.5-5 µs in a manner consistent with bulk reaction, which supports that this mechanism plays a dominant role in the overall reaction process. Ta nanocomposites were also studied to determine if a high melting point (3280 K) affects the loss of nanostructure and rate of reaction. The condensed phase reaction pathway was further explored using reactive multilayers sputter deposited onto thin Pt wires to allow for temperature jump (T-Jump) heating at rates of ~5x10^5 K/s. High speed video and a time of flight mass spectrometry (TOFMS) were used to observe ignition temperature and speciation as a function of bilayer thickness. The ignition process was modeled and a low activation energy for effective diffusivity was determined. T-Jump TOFMS along with constant volume combustion cell studies were also used to determine the effect of gas release in nanoparticle systems by comparing the reaction properties of CuO and Cu2O.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dutra, R. P. S.; Varela,M. L.; Nascimento, R. M. ; Gomes, U. U. ; Martinelli1, A. E. ; Paskocimas, C. A. Estudo comparativo da queima rápida com a queima tradicional nas propriedades de materiais cerâmicos de base argilosa. Cerâmica [online]. 2009, vol.55, n.333, pp. 100-105. ISSN 0366-6913. doi:Disponivem em: . Acesso em: 04 out. 2010.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As metas da União Europeia para 2020 em termos de biocombustíveis e biolíquidos traduziram-se, na última década, num destaque da indústria de biodiesel em Portugal. Inerente ao processo de produção biodiesel está um subproduto, o glicerol bruto, cujo estudo tem vindo a ser alvo de interesse na comunidade científica. O objetivo principal deste trabalho consistiu no estudo da gasificação do glicerol técnico e do glicerol bruto, usando vapor como agente oxidante. Pretendeu-se avaliar a composição do gás de produção obtido e os parâmetros de gasificação, como a percentagem de conversão de carbono e de hidrogénio, o rendimento de gás seco, a eficiência de gás frio e o poder calorífico do gás produzido. No estudo da gasificação do glicerol técnico avaliou-se o efeito da temperatura na performance do processo, entre 750 – 1000 ºC, e estudou-se ainda o efeito do caudal de alimentação ao reator (3,8 mL/min, 6,5 mL/min e 10,0 mL/min). Para o caudal mais baixo, estudou-se o efeito da razão de mistura glicerol/água (25/75, 40/60, 60/40 e 75/25) e para a razão de mistura 60/40 foi avaliada a influência da adição de ar como agente gasificante. O estudo da gasificação do glicerol bruto foi feito realizando ensaios de gasificação numa gama de temperaturas de 750 ºC a 1000 ºC, para uma razão de mistura glicerol/água (60/40) com o caudal de 3,8 mL/min e usando apenas vapor de água como agente de gasificação. Os ensaios foram realizados num reator de leito fixo de 500 mm de comprimento e 90 mm de diâmetro interno, composto por um leito de alumina com partículas de 5 mm de diâmetro. O aquecimento foi realizado com um forno elétrico de 4 kW. A amostra de gás de produção recolhida foi analisada por cromatografia gasosa com detector de termocondutividade. Os resultados obtidos na gasificação do glicerol técnico, revelaram que a temperatura é uma variável preponderante no desempenho do processo de gasificação. À exceção do poder calorífico superior, para o qual se obteve uma ligeira diminuição de valores com o aumento da temperatura, os valores mais elevados dos parâmetros de gasificação foram obtidos para temperaturas superiores a 900 ºC. Esta temperatura parece ser determinante no modelo cinético de gasificação do glicerol, condicionando a composição do gás de produção obtido. Concluiu-se ainda que, na gama de caudais testada, o caudal de alimentação ao reator não teve influência no processo de gasificação. Os ensaios realizados para avaliar o efeito da razão de mistura permitiram verificar que, o aumento da adição de água à alimentação se traduz na redução do teor de CO e de CH4 e no aumento do teor de H2 e CO2, no gás de produção. Para a razão de mistura 25/75 foram obtidos valores de 1,3 para o rácio H2/CO para temperaturas superiores a 900 ºC. A influência da adição de água tornou-se mais evidente nos ensaios de gasificação realizados a temperaturas superiores a 900 ºC. Verificou-se um aumento da conversão de carbono, do rendimento de gás seco e da eficiência do gás frio e uma ligeira diminuição do poder calorífico e da potência disponível, no gás de produção. Para as razões de misturas 60/40 e 40/60 obtiveram-se resultados, para os parâmetros de gasificação, da mesma ordem de grandeza e com valores intermédios entre os obtidos para as razões de mistura 25/75 e 75/25. Porém, quanto maior o teor de água alimentado maior o consumo de energia associado à vaporização da água. Assim, o aumento do teor de água na mistura só apresentará interesse industrial se o objetivo passar pela produção de hidrogénio. Quanto ao efeito da adição de ar como agente de gasificação, os resultados obtidos dão indicação que se poderão potenciar algumas reações exotérmicas que contribuirão para a redução do consumo energético global do processo. Por outro lado, o gás de produção apresentou um rácio H2/CO interessante do ponto de vista da sua aplicação industrial, superior em 35 % ao verificado para a gasificação efetuada apenas na presença de vapor. À exceção do decréscimo no valor do poder calorífico superior do gás de produção, os restantes parâmetros estudados apresentaram a mesma ordem de grandeza, dos obtidos para o estudo da mesma razão de mistura na ausência de ar. Relativamente ao estudo da gasificação do glicerol bruto, obtiveram-se valores de rácio H2/CO e eficiência de gás frio mais elevados que os valores obtidos para a mesma razão de mistura usando glicerol técnico. Os demais parâmetros de gasificação avaliados mostraram-se semelhantes entre as duas matérias-primas, verificando-se apenas uma ligeira diminuição no valor do poder calorífico superior do gás produzido com glicerol bruto. Os resultados obtidos demonstram a possibilidade de valorização energética do glicerol bruto resultante da produção de biodiesel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Climate may affect broiler production, especially where there are heat waves, which may cause high mortality rates due to the heat stress. Heat wave prediction and characterization may allow early mitigation actions to be taken. Data Mining is one of the tools used for such a characterization, particularly when a large number of variables is involved. The objective of this study was to classify heat waves that promote broiler chicken mortality in poultry houses equipped with minimal environmental control. A single day of heat, a heat-shock day, is capable of producing high broiler mortality. In poultry houses equipped with fans and evaporative cooling, the characterization of heat waves affecting broiler mortality between 29 days of age and market age presented 89.34% Model Accuracy and 0.73 Class Precision for high mortality. There was no influence on high mortality (HM) of birds between 29 and 31 days of age. Maximum temperature humidity index (THI) above 30.6 ºC was the main characteristic of days when there was a heat wave, causing high mortality in broilers older than 31 days. The high mortality of broilers between 31 and 40 days of age occurred when maximum THI was above 30.6 ºC and maximum temperature of the day was above 34.4 ºC. There were two main causes of high mortality of broilers older than 40 days: 1) maximum THI above 30.6 ºC and minimum THI equal or lower than 15.5 ºC; 2) maximum THI above 30.6 ºC, minimum THI lower than 15.5 ºC, and the time of maximum temperature later than 15:00h. The heat wave influence on broiler mortality lasted an average of 2.7 days.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, the discovery of bulk metallic glasses with exceptional properties has generated much interest. One of their most intriguing features is their capacity for viscous flow above the glass transition temperature. This characteristic allows metallic glasses to be formed like plastics at modest temperatures. However, crystallization of supercooled metallic liquids in the best bulk metallic glass-formers is much more rapid than in most polymers and silicate glass-forming liquids. The short times to crystallization impairs experimentation on and processing of supercooled glass-forming metallic liquids. A technique to rapidly and uniformly heat metallic glasses at rates of 105 to 106 kelvin per second is presented. A capacitive discharge is used to ohmically heat metallic glasses to temperatures in the super cooled liquid region in millisecond time-scales. By heating samples rapidly, the most time-consuming step in experiments on supercooled metallic liquids is reduced orders of magnitude in length. This allows for experimentation on and processing of metallic liquids in temperature ranges that were previously inaccessible because of crystallization.

A variety of forming techniques, including injection molding and forging, were coupled with capacitive discharge heating to produce near net-shaped metallic glass parts. In addition, a new forming technique, which combines a magnetic field with the heating current to produce a forming force, was developed. Viscosities were measured in previously inaccessible temperature ranges using parallel plate rheometry combined with capacitive discharge heating. Lastly, a rapid pulse calorimeter was developed with this technique to investigate the thermophysical behavior of metallic glasses at these rapid heating rates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New mobile digital communication technologies present opportunities for advertisers to capitalize on the evolving relationships of consumers with their mobile devices and their desire to access enhanced information services while mobile (m-services). Consumers already use mobile devices (cell phones, personal mobile digital assistants) for traditional phone calls and message handling (e.g., Kalakota and Robinson, 2002; Sullivan Mort and Drennan, 2002). The combination of rapidly developing mobile digital technology and high uptake rates of mobile devices presents enormous potential for delivery of m-services through these devices (Bitner, Brown, and Meuter, 2000). M-services encompass a wide variety of types including the ability to trade stock, to book theater and movie tickets while accessing seating plans online, to send and receive text and pictures, and receive personalized direct advertising such as alerts for shopping bargains. Marketing communications, and specifically advertising, may be delivered as an m-service and termed m-services advertising, forming part of the broader category of m-services. However, advertising research has not yet addressed the area of m-services and needs to do so to be able to take advantage of the advanced interactivity (Yadav and Varadarajan, 2005) of mobile communication devices. Such advertising research is likely to help develop open attitudes and responses to new business models as has been advocated for other new technology such as advanced television (Tauder, 2005). In this article, we model the factors influencing the use of m-services, in the context of consumers' existing relationships with mobile devices. First, we address the value propositions underpinning consumer involvement with mobile devices. Next, we canvass the types of involvement relevant to this consumption domain and argue that involvement, together with personal attributes innovativeness and self-efficacy, will influence use of m-services. Finally, implications for advertising delivered as an m-service are discussed, the potential for m-services advertising as part of m-commerce are canvassed, and directions for future research identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poor student engagement and high failure rates in first year units were addressed at the Queensland University of Technology (QUT) with a course restructure involving a fresh approach to introducing programming. Students’ first taste of programming in the new course focused less on the language and syntax, and more on problem solving and design, and the role of programming in relation to other technologies they are likely to encounter in their studies. In effect, several technologies that have historically been compartmentalised and taught in isolation have been brought together as a breadth-first introduction to IT. Incorporating databases and Web development technologies into what used to be a purely programming unit gave students a very short introduction to each technology, with programming acting as the glue between each of them. As a result, students not only had a clearer understanding of the application of programming in the real world, but were able to determine their preference or otherwise for each of the technologies introduced, which will help them when the time comes for choosing a course major. Students engaged well in an intensely collaborative learning environment for this unit which was designed to both support the needs of students and meet industry expectations. Attrition from the unit was low, with computer laboratory practical attendance rates for the first time remaining high throughout semester, and the failure rate falling to a single figure percentage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The repair of large non-unions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause bone marrow stromal cells to lose their differentiation ability. To overcome these limitations, we have genetically engineered bone marrow stromal cells to constitutively overexpress the osteoblast specific transcription factor Runx2. In the present study, we examined Runx2-modified bone marrow stromal cells, delivered via poly(caprolactone) scaffolds loaded with type I collagen meshes, in critically-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds and empty defects. Runx2 expression in bone marrow stromal cells accelerated healing of critically-sized defects compared to unmodified bone marrow stromal cells and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects which may reduce recovery time and the need for external fixation of critically-sized defects.