973 resultados para Hepatocellular Carcinoma
Resumo:
The mechanisms underlying atorvastatin supression of ABCB1 gene expression, at transcriptional and post-transcriptional levels of ABCB1 gene in HepG2 (human hepatocellular carcinoma) cells were investigated. Quantitative real-time PCR was used to measure mRNA levels, as well as to estimate the half-life of ABCB1 mRNA. Western blotting analysis was performed in order to measure protein levels of ABCB1. Electrophoretic mobility shift assay (EMSA) was used to evaluate interactions between protein(s) and ABCB1 promoter region. Exposure to atorvastatin for 24 h resulted in a dose-dependent decrease of ABCB1 mRNA and protein levels, which was not abolished by addition of farnesyl or geranylgeranyl pyrophosphate. After removing fetal bovine serum from the media, however, ABCB1 expression was decreased by 2-fold in either HepG2 cells treated and non-treated with atorvastatin. Addition of cholesterol to serum free media abolished this latter effect on ABCB1 mRNA levels. In EMSA using a 5`-end-labeled 241 bp ABCB1 promoter DNA fragment (-198 to +43) as probe, the binding of the proteins to the probe was reduced by NF-Y, but not changed by NF kappa B, AP-1, and SP1. However, the NF-Y binding activity was similar in control and atorvastatin-treated cells. mRNA stability studies revealed that ABCB1 mRNA degradation was increased in 1, 10 and 20 mu M atorvastatin-treated versus control cells (half-lives of 2 h versus 7 h). Therefore, evidence is provided that decreased mRNA stability by atorvastatin treatment may explain the decrease in ABCB1 transcript levels. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hepatocellular carcinoma (HCC) ranks in prevalence and mortality among top 10 cancers worldwide. Butyric acid (BA), a member of histone deacetylase inhibitors (HDACi) has been proposed as an anticareinogenic agent. However, its short half-life is a therapeutical limitation. This problem could be circumvented with tributyrin (TB), a proposed BA prodrug. To investigate TB effectiveness for chemoprevention, rats were treated with the compound during initial phases of ""resistant hepatocyte"" model of hepatocarcinogenesis, and cellular and molecular parameters were evaluated. TB inhibited (p < 0.05) development of hepatic preneoplastic lesions (PNL) including persistent ones considered HCC progression sites. TB increased (p < 0.05) PNL remodeling, a process whereby they tend to disappear. TB did not inhibit cell proliferation in PNL, but induced (p < 0.05) apoptosis in remodeling ones. Compared to controls, rats treated with TB presented increased (P < 0.05) hepatic levels of BA indicating its effectiveness as a prodrug. Molecular mechanisms of TB-induced hepatocarcinogenesis chemoprevention were investigated. TB increased (p < 0.05) hepatic nuclear histone H3K9 hyperacetylation specifically in PNL and p21 protein expression, which could be associated with inhibitory HDAC effects. Moreover, it reduced (p < 0.05) the frequency of persistent PNL with aberrant cytoplasmic p53 accumulation, an alteration associated with increased malignancy. Original data observed in our study support the effectiveness of TB as a prodrug of BA and as an HDACi in hepatocarcinogenesis chemoprevention. Besides histone acetylation and p21 restored expression, molecular mechanisms involved with TB anticarcinogenic actions could also be related to modulation of p53 pathways. (C) 2008 Wiley-Liss, Inc.
Resumo:
DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.
Resumo:
Magnetic resonance imaging (MRI) relies on the physical properties of unpaired protons in tissues to generate images. Unpaired protons behave like tiny bar magnets and will align themselves in a magnetic field. Radiofrequency pulses will excite these aligned protons to higher energy states. As they return to their original state, they will release this energy as radio waves. The frequency of the radio waves depends on the local magnetic field and by varying this over a subject, it is possible to build the images we are familiar with. In general, MRI has not been sufficiently sensitive or specific in the assessment of diffuse liver disease for clinical use. However, because of the specific characteristics of fat and iron, it may be useful in the assessment of hepatic steatosis and iron overload. Magnetic resonance imaging is useful in the assessment of focal liver disease, particularly in conjunction with contrast agents. Haemangiomas have a characteristic bright appearance on T-2 weighted images because of the slow flowing blood in dilated sinusoids. Focal nodular hyperplasia (FNH) has a homogenous appearance, and enhances early in the arterial phase after gadolinium injection, while the central scar typically enhances late. Hepatic adenomas have a more heterogenous appearance and also enhance in the arterial phase, but less briskly than FNH. Hepatocellular carcinoma is similar to an adenoma, but typically occurs in a cirrhotic liver and has earlier washout of contrast. The appearance of metastases depends on the underlying primary malignancy. Overall, MRI appears more sensitive and specific than computed tomography with contrast for the detection and evaluation of malignant lesions. (C) 2000 Blackwell Science Asia Pty Ltd.
Resumo:
EDD (E3 isolated by differential display), located at chromosome 8q22.3, is the human orthologue of the Drosophila melanogaster tumour suppressor gene 'hyperplastic discs' and encodes a HECT domain E3 ubiquitin protein-ligase. To investigate the possible involvement of EDD in human cancer, several cancers from diverse tissue sites were analysed for allelic gain or loss (allelic imbalance, AI) at the EDD locus using an EDD-specific microsatellite, CEDD, and other polymorphic microsatellites mapped in the vicinity of the 8q22.3 locus. Of 143 cancers studied, 38 had AI at CEDD (42% of 90 informative cases). In 14 of these cases, discrete regions of imbalance encompassing 8q22.3 were present, while the remainder had more extensive 8q aberrations. AI of CEDD was most frequent in ovarian cancer (22/47 informative cases, 47%), particularly in the serous subtype (16/22, 73%), but was rare in benign and borderline ovarian tumours. AI was also common in breast cancer (31%), hepatocellular carcinoma (46%), squamous cell carcinoma of the tongue (50%) and metastatic melanoma (18%). AI is likely to represent amplification of the EDD gene locus rather than loss of heterozygosity, as quantitative RT-PCR and immunohistochemistry showed that EDD mRNA and protein are frequently overexpressed in breast and ovarian cancers, while among breast cancer cell lines EDD overexpression and increased gene copy number were correlated. These results demonstrate that AI at the EDD locus is common in a diversity of carcinomas and that the EDD gene is frequently overexpressed in breast and ovarian cancer, implying a potential role in cancer progression.
Resumo:
Hemochromatosis can be classified as (a) primary, when it originates from a genetic disturbance that promotes the increase of iron absorption, or (b) secondary, when it relates to chronic diseases or to multiple transfusions. The distribution of iron accumulation differs between these two forms; therefore, they can be distinguished by using imaging methods in the majority of cases. Magnetic resonance (MR) imaging is the most sensitive and specific imaging modality in the diagnosis of hemochromatosis. The susceptibility effect caused by the accumulation of iron leads to signal loss in the affected tissues, particularly with the T2*-weighted sequences, which makes the diagnosis of iron overload possible. By using MR imaging techniques, it is possible to estimate the hepatic iron concentration in a noninvasive way, thereby avoiding repeated biopsies. Hemochromatosis can lead to complications, such as a higher frequency of neoplasia, particularly the development of hepatocellular carcinoma. Other neoplasms, such as colorectal tumors, are also associated. Complications related to the treatment of chronic anemia include the appearance of peliosis hepatis and tumors, which can regress after the suspension of treatment with drugs. Knowledge of the disease and of the patterns of iron deposition in patients with iron overload enables not only diagnosis, but also treatment, follow-up, and the detection of possible complications by using imaging methods. (C) RSNA, 2009 . radiographics.rsna.org
Resumo:
Hepatocellular carcinoma (HCC) is associated with multiple risk factors and is believed to arise from pre-neoplastic lesions, usually in the background of cirrhosis. However, the genetic and epigenetic events of hepatocarcinogenesis are relatively poorly understood. HCC display gross genomic alterations, including chromosomal instability (CIN), CpG island methylation, DNA rearrangements associated with hepatitis B virus (HBV) DNA integration, DNA hypomethylation and, to a lesser degree, microsatellite instability. Various studies have reported CIN at chromosomal regions, 1p, 4q, 5q, 6q, 8p, 10q, 11p, 16p, 16q, 17p and 22q. Frequent promoter hypermethylation and subsequent loss of protein expression has also been demonstrated in HCC at tumor suppressor gene (TSG), p16, p14, p15, SOCS1, RIZ1, E-cadherin and 14-3-3 sigma. An interesting observation emerging from these studies is the presence of a methylator phenotype in hepatocarcinogenesis, although it does not seem advantageous to have high levels of microsatellite instability. Methylation also appears to be an early event, suggesting that this may precede cirrhosis. However, these genes have been studied in isolation and global studies of methylator phenotype are required to assess the significance of epigenetic silencing in hepatocarcinogenesis. Based on previous data there are obvious fundamental differences in the mechanisms of hepatic carcinogenesis, with at least two distinct mechanisms of malignant transformation in the liver, related to CIN and CpG island methylation. The reason for these differences and the relative importance of these mechanisms are not clear but likely relate to the etiopathogenesis of HCC. Defining these broad mechanisms is a necessary prelude to determine the timing of events in malignant transformation of the liver and to investigate the role of known risk factors for HCC.
Resumo:
Chronic hepatitis C (CHC) is one of the most important causes of chronic liver disease in the world, potentially resulting in cirrhosis, hepatocellular carcinoma, and the need for liver transplantation. Liver biopsy is currently performed before therapy indication. Although, it is the golden standard there are many reasons to avoid or delay the procedure. APRI Score is an easy, low cost and practice alternative method which was described as an alternative for assessing structural changes in chronic hepatitis C (CHC). The rationale of this study was to observe the accuracy of APRI Score in comparison to liver biopsy in 400 patients divided into two groups of 200 carriers (Validation and Experimental groups respectively) selected at random or according to liver fibrosis staging (METAVIR). The ROC curves showed a concordance among these two methods of 92% and 88.5% when 1.05 was the cut off (F3 and F4), and 87% and 83%, on 0.75 cut offs (F2-F4). The discordance in advanced fibrosis staging (F3 and F4) was only 16 (8%) and 22 (11%) out of 200 patients in the experimental and validation groups, respectively. In 26 (13%) out of 200 patients in the experimental group and 34 (17%) out of 200 patients in the validation group, there was discordance between APRI Score and liver biopsy in moderate and advanced fibrosis (F2-F4). In conclusion APRI is a serological marker that has satisfactory sensitivity and specificity together with a high predictive value and it can be useful either in the absence of a biopsy or to reduce the frequency with which biopsies need to be carried out to monitor the evolution of chronic hepatitis C and the right moment for treatment indication.
Resumo:
This study analyzed the genotype distribution and frequency of lamivudine (LAM) and tenofovir (TDF) resistance mutations in a group of patients co-infected with HIV and hepatitis B virus (HBV). A cross-sectional study of 847 patients with HIV was conducted. Patients provided blood samples for HBsAg detection. The load of HBV was determined using an ""in-house"" real-time polymerase chain reaction. HBV genotypes/subgenotypes, antiviral resistance, basal core promoter (BCP), and precore mutations were detected by DNA sequencing. Twenty-eight patients with co-infection were identified. The distribution of HBV genotypes among these patients was A (n = 9; 50%), D (n = 4; 22.2%), G (n = 3; 16.7%), and F (n = 2; 11.1%). Eighteen patients were treated with LAM and six patients were treated with LAM plus TDF. The length of exposure to LAM and TDF varied from 4 to 216 months. LAM resistance substitutions (rtL180M + rtM204V) were detected in 10 (50%) of the 20 patients with viremia. This pattern and an accompanying rtV173L mutation was found in four patients. Three patients with the triple polymerase substitution pattern (rtV173L+ rtL180M + rtM204V) had associated changes in the envelope gene (sE164D + sl195M). Mutations in the BCP region (A1762T, G1764A) and in the precore region (G1896A, G1899A) were also found. No putative TDF resistance substitution was detected. The data suggest that prolonged LAM use is associated with the emergence of particular changes in the HBV genome, including substitutions that may elicit a vaccine escape phenotype. No putative TDF resistance change was detected after prolonged use of TDF. J. Med. Virol. 82:1481-1488, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Purpose: Hepatectomy remains a complex operation even in experienced hands. The objective of the present study was to describe our experience in liver resections, in the light of liver transplantation, emphasizing the indications for surgery, surgical techniques, complications, and results. Methods: The medical records of 53 children who underwent liver resection for primary or metastatic hepatic tumors were reviewed. Ultrasonography, computed tomographic (CT) scan, and needle biopsy were the initial methods used to diagnose malignant tumors. After neoadjuvant chemotherapy, tumor resectability was evaluated by another CT scan. Surgery was performed by surgeons competent in liver transplantation. As in liver living donor operation, vascular anomalies were investigated. The main arterial anomalies found were the right hepatic artery emerging from the superior mesenteric artery and left hepatic artery from left gastric artery. Hilar structures were dissected very close to liver parenchyma. The hepatic artery and portal vein were dissected and ligated near their entrance to the liver parenchyma to avoid damaging the hilar vessels of the other lobe. During dissection of the suprahepatic veins, the venous infusion was decreased to reduce central venous pressure and potential bleeding from hepatic veins and the vena cava. Results: Fifty-three children with hepatic tumors underwent surgical treatment, 47 patients underwent liver resections, and in 6 cases, liver transplantation was performed because the tumor was considered unresectable. There were 31 cases of hepatoblastoma, with a 9.6% mortality rate. Ten children presented with other malignant tumors-3 undifferentiated sarcomas, 2 hepatocellular carcinomas, 2 fibrolamellar hepatocellular carcinomas, a rhabdomyosarcoma, an immature ovarian teratoma, and a single neuroblastoma. These cases had a 50% mortality rate. Six children had benign tumors-4 mesenchymal hamartoma, 1 focal nodular hyperplasia, and a mucinous cystadenoma. All of these children had a favorable outcome. Hepatic resections included 22 right lobectomies, 9 right trisegmentectomies, 8 left lobectomies, 5 left trisegmentectomies, 2 left segmentectomies, and 1 case of monosegment (segment IV) resection. The overall mortality rate was 14.9%, and all deaths were related to recurrence of malignant disease. The mortality rate of hepatoblastoma patients was less than other malignant tumors (P = .04). Conclusion: The resection of hepatic tumors in children requires expertise in pediatric surgical practice, and many lessons learned from liver transplantation can be applied to hepatectomies. The present series showed no mortality directly related to the surgery and a low complication rate. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The longest open reading frame of PKHD1 (polycystic kidney and hepatic disease 1), the autosomal recessive polycystic kidney disease (ARPKD) gene, encodes a single-pass, integral membrane protein named polyductin or fibrocystin. A fusion protein comprising its intracellular C-terminus, FP2, was previously used to raise a polyclonal antiserum shown to detect polyductin in several human tissues, including liver. In the current study, we aimed to investigate by immunohistochemistry the detailed polyductin localization pattern in normal (ductal plate [DP], remodelling ductal plate [RDP], remodelled bile ducts) and abnormal development of the primitive intrahepatic biliary system, known as ductal plate malformation (DPM). This work also included the characterization of polyductin expression profile in various histological forms of neonatal and infantile cholestasis, and in cholangiocellular carcinoma (CCC) and hepatocellular carcinoma (HCC). We detected polyductin expression in the intrahepatic biliary system during the DP and the RDP stages as well as in DPM. No specific staining was found at the stage of remodelled bile ducts. Polyductin was also detected in liver biopsies with neonatal cholestasis, including mainly biliary atresia and neonatal hepatitis with ductular reaction as well as congenital hepatic fibrosis. In addition, polyductin was present in CCC, whereas it was absent in HCC. Polyductin was also co-localized in some DP cells together with oval stem cell markers. These results represent the first systematic study of polyductin expression in human pathologies associated with abnormal development of intrahepatic biliary tree, and support the following conclusions: (i) polyductin expression mirrors developmental properties of the primitive intrahepatic biliary system; (ii) polyductin is re-expressed in pathological conditions associated with DPM and (iii) polyductin might be a potential marker to distinguish CCC from HCC.
Resumo:
Serum hepatitis B virus (HBV) DNA [eve[ is a predictor of the development of cirrhosis and hepatocellullar carcinoma in chronic hepatitis B patients. Nevertheless, the distribution of viral load levels in chronic HBV patients in Brazil has yet to be described. This cross-sectional study included 564 participants selected in nine Brazilian cities located in four of the five regions of the country using the database of a medical diagnostics company. Admission criteria included hepatitis B surface antigen seropositivity, availability of HBV viral toad samples and age >= 18 years. Mates comprised 64.5% of the study population. Mean age was 43.7 years. Most individuals (62.1%) were seronegative for the hepatitis B e antigen (HBeAg). Median serum ALT level was 34 U/L. In 58.5% of the patients HBV-DNA levels ranged from 300 to 99,999 copies/mL; however, in 21.6% levels were undetectable. Median HBV-DNA level was 2,351 copies/mL. Over 60% of the patients who tested negative for HBeAg and in whom ALT level was less than 1.5 times the upper limit of the normal range had HBV-DNA levels > 2,000 IU/mL, which has been considered a cut-off point for indicating a liver biopsy and/or treatment. In conclusion, HBV-DNA level identified a significant proportion of Brazilian individuals with chronic hepatitis B at risk of disease progression. Furthermore, this tool. enables those individuals with high HBV-DNA levels who are susceptible to disease progression to be identified among patients with normal or stightly elevated ALT.
Resumo:
Hepatitis B is a worldwide health problem affecting about 2 billion people and more than 350 million are chronic carriers of the virus. Nine HBV genotypes (A to I) have been described. The geographical distribution of HBV genotypes is not completely understood due to the limited number of samples from some parts of the world. One such example is Colombia, in which few studies have described the HBV genotypes. In this study, we characterized HBV genotypes in 143 HBsAg-positive volunteer blood donors from Colombia. A fragment of 1306 bp partially comprising HBsAg and the DNA polymerase coding regions (S/POL) was amplified and sequenced. Bayesian phylogenetic analyses were conducted using the Markov Chain Monte Carlo (MCMC) approach to obtain the maximum clade credibility (MCC) tree using BEAST v.1.5.3. Of all samples, 68 were positive and 52 were successfully sequenced. Genotype F was the most prevalent in this population (77%) - subgenotypes F3 (75%) and Fib (2%). Genotype G (7.7%) and subgenotype A2 (15.3%) were also found. Genotype G sequence analysis suggests distinct introductions of this genotype in the country. Furthermore, we estimated the time of the most recent common ancestor (TMRCA) for each HBV/F subgenotype and also for Colombian F3 sequences using two different datasets: (i) 77 sequences comprising 1306 bp of S/POL region and (ii) 283 sequences comprising 681 bp of S/POL region. We also used two other previously estimated evolutionary rates: (i) 2.60 x 10(-4) s/s/y and (ii) 1.5 x 10(-5) s/s/y. Here we report the HBV genotypes circulating in Colombia and estimated the TMRCA for the four different subgenotypes of genotype F. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Hepatitis C virus (HCV) is a frequent cause of acute and chronic hepatitis and a leading cause for cirrhosis of the liver and hepatocellular carcinoma. HCV is classified in six major genotypes and more than 70 subtypes. In Colombian blood banks, serum samples were tested for anti-HCV antibodies using a third-generation ELISA. The aim of this study was to characterize the viral sequences in plasma of 184 volunteer blood donors who attended the ""Banco Nacional de Sangre de la Cruz Roja Colombiana,`` Bogota, Colombia. Three different HCV genomic regions were amplified by nested PCR. The first of these was a segment of 180 bp of the 5`UTR region to confirm the previous diagnosis by ELISA. From those that were positive to the 5`UTR region, two further segments were amplified for genotyping and subtyping by phylogenetic analysis: a segment of 380 bp from the NS5B region; and a segment of 391 bp from the E1 region. The distribution of HCV subtypes was: 1b (82.8%), 1a (5.7%), 2a (5.7%), 2b (2.8%), and 3a (2.8%). By applying Bayesian Markov chain Monte Carlo simulation, it was estimated that HCV-1b was introduced into Bogota around 1950. Also, this subtype spread at an exponential rate between about 1970 to about 1990, after which transmission of HCV was reduced by anti-HCV testing of this population. Among Colombian blood donors, HCV genotype 1b is the most frequent genotype, especially in large urban conglomerates such as Bogota, as is the case in other South American countries. J. Med. Virol. 82: 1889-1898, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Sustained virologic suppression is a primary goal of therapy for chronic hepatitis B (CHB). In study entecavir (ETV)-022, 48 weeks of entecavir 0.5 mg was superior to lamivudine for virologic suppression for hepatitis B e antigen (HBeAg)-positive CHB. A total of 183 entecavir-treated patients from ETV-022 subsequently enrolled in study ETV-901. We present the results after up to 5 years (240 weeks) of continuous entecavir therapy. The entecavir long-term cohort consists of patients who received >= 1 year of entecavir 0.5 mg in ETV-022 and then entered ETV-901 with a treatment gap <= 35 days. In ETV-901 the entecavir dose was 1.0 mg daily. For patients with samples available at Year 5, proportions with hepatitis B virus (HBV) DNA <300 copies/mL, normal alanine aminotransferase (ALT) levels, HBeAg loss, and HBeAg seroconversion were determined. In all, 146 patients met criteria for inclusion in the entecavir long-term cohort. At Year 5, 94% (88/94) had HBV DNA <300 copies/mL and 80% (78/98) had normal ALT levels. In addition to patients who achieved serologic responses during study ETV-022, 23% (33/141) achieved HBeAg seroconversion and 1.4% (2/145) lost hepatitis B surface antigen (HBsAg) during study ETV-901. Through 5 years, entecavir resistance emerged in one patient. The safety profile of entecavir was consistent with previous reports. Conclusion: Extended therapy with entecavir through 5 years maintained or increased rates of HBV DNA suppression and ALT normalization. Additional patients also achieved HBeAg loss and seroconversion. Entecavir provides sustained viral suppression with minimal resistance during long-term treatment of HBeAg-positive CHB. (HEPATOLOGY 2010;51:422-430.)