985 resultados para Helium Hamiltonian
Resumo:
Using a functional-integral approach, we have determined the temperature below which cavitation in liquid helium is driven by thermally assisted quantum tunneling. For both helium isotopes, we have obtained the crossover temperature in the whole range of allowed negative pressures. Our results are compatible with recent experimental results on 4He.
Resumo:
We present a complete calculation of the structure of liquid 4He confined to a concave nanoscopic wedge, as a function of the opening angle of the walls. This is achieved within a finite-range density functional formalism. The results here presented, restricted to alkali metal substrates, illustrate the change in meniscus shape from rather broad to narrow wedges on weak and strong alkali adsorbers, and we relate this change to the wetting behavior of helium on the corresponding planar substrate. As the wedge angle is varied, we find a sequence of stable states that, in the case of cesium, undergo one filling and one emptying transition at large and small openings, respectively. A computationally unambiguous criterion to determine the contact angle of 4He on cesium is also proposed.
Resumo:
We investigate adsorption of helium in nanoscopic polygonal pores at zero temperature using a finite-range density functional theory. The adsorption potential is computed by means of a technique denoted as the elementary source method. We analyze a rhombic pore with Cs walls, where we show the existence of multiple interfacial configurations at some linear densities, which correspond to metastable states. Shape transitions and hysterectic loops appear in patterns which are richer and more complex than in a cylindrical tube with the same transverse area.
Resumo:
The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.
Resumo:
A comparision of the local effects of the basis set superposition error (BSSE) on the electron densities and energy components of three representative H-bonded complexes was carried out. The electron densities were obtained with Hartee-Fock and density functional theory versions of the chemical Hamiltonian approach (CHA) methodology. It was shown that the effects of the BSSE were common for all complexes studied. The electron density difference maps and the chemical energy component analysis (CECA) analysis confirmed that the local effects of the BSSE were different when diffuse functions were present in the calculations
Resumo:
Recently. Carter and Handy [J. Chem. Phys. 113 (2000) 987] have introduced the theory of the reaction path Hamiltonian (RPH) [J. Chem. Phys. 72 (1980) 99] into the variational scheme MULTIMODE, for the calculation of the J = 0 vibrational levels of polyatomic molecules, which have a single large-amplitude motion. In this theory the reaction path coordinate s becomes the fourth dimension of the moment-of-inertia tensor, and must be treated separately from the remaining 3N - 7 normal coordinates in the MULTIMODE program. In the modified program, complete integration is performed over s, and the M-mode MULTIMODE coupling approximation for the evaluation of the matrix elements applies only to the 3N - 7 normal coordinates. In this paper the new algorithm is extended to the calculation of rotational-vibration energy levels (i.e. J > 0) with the RPH, following from our analogous implementation for rigid molecules [Theoret. Chem. Acc. 100 (1998) 191]. The full theory is given, and all extra terms have been included to give the exact kinetic energy operator. In order to validate the new code, we report studies on hydrogen peroxide (H2O2), where the reaction path is equivalent to torsional motion. H2O2 has previously been studied variationally using a valence coordinate Hamiltonian; complete agreement for calculated rovibrational levels is obtained between the previous results and those from the new code, using the identical potential surface. MULTIMODE is now able to calculate rovibrational levels for polyatomic molecules which have one large-amplitude motion. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We report calculations using a reaction surface Hamiltonian for which the vibrations of a molecule are represented by 3N-8 normal coordinates, Q, and two large amplitude motions, s(1) and s(2). The exact form of the kinetic energy operator is derived in these coordinates. The potential surface is first represented as a quadratic in Q, the coefficients of which depend upon the values of s(1),s(2) and then extended to include up to Q(6) diagonal anharmonic terms. The vibrational energy levels are evaluated by solving the variational secular equations, using a basis of products of Hermite polynomials and appropriate functions of s(1),s(2). Our selected example is malonaldehyde (N=9) and we choose as surface parameters two OH distances of the migrating H in the internal hydrogen transfer. The reaction surface Hamiltonian is ideally suited to the study of the kind of tunneling dynamics present in malonaldehyde. Our results are in good agreement with previous calculations of the zero point tunneling splitting and in general agreement with observed data. Interpretation of our two-dimensional reaction surface states suggests that the OH stretching fundamental is incorrectly assigned in the infrared spectrum. This mode appears at a much lower frequency in our calculations due to substantial transition state character. (c) 2006 American Institute of Physics.
Resumo:
This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E³, the spheres S³ and the hyperboloids H³ with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1,3). The optimal controls of these systems are solved explicitly in terms of elliptic functions. In this paper, a geometric interpretation of the extremal solutions is given with particular emphasis to a singularity in the explicit solutions. Using a reduced form of the Casimir functions the geometry of these solutions is illustrated.
Resumo:
This paper considers left-invariant control systems defined on the Lie groups SU(2) and SO(3). Such systems have a number of applications in both classical and quantum control problems. The purpose of this paper is two-fold. Firstly, the optimal control problem for a system varying on these Lie Groups, with cost that is quadratic in control is lifted to their Hamiltonian vector fields through the Maximum principle of optimal control and explicitly solved. Secondly, the control systems are integrated down to the level of the group to give the solutions for the optimal paths corresponding to the optimal controls. In addition it is shown here that integrating these equations on the Lie algebra su(2) gives simpler solutions than when these are integrated on the Lie algebra so(3).