990 resultados para Head tracking
Resumo:
Tobacco use is causally associated with head and neck squamous cell cancer (HNSCC). Here, we present the results of a case-control study that investigated the effects that the genetic variants of the cytochrome (CYP)1A1, CYP1B1, glutathione-S-transferase (GST)M1, GSTT1, and GSTP1 genes have on modifying the risk of smoking-related HNSCC. Allelisms of the CYP1A1, GSTT1, GSTM1, and GSTT1 genes alone were not associated with an increased risk. CYP1B1 codon 432 polymorphism was found to be a putative susceptibility factor in smoking-related HNSCC. The frequency of CYP1B1 polymorphism was significantly higher (P < 0.001) in the group of smoking cases when compared with smoking controls. Additionally, an odds ratio (OR) of 4.53 (2.62-7.98) was discovered when investigating smoking and nonsmoking cases for the susceptible genotype CYP1B1*2/*2, when compared with the presence of the genotype wild type. In combination with polymorphic variants of the GST genes, a synergistic-effect OR was observed. The calculated OR for the combined genotype CYP1B1*2/*2 and GSTM1*2/*2 was 12.8 (4.09-49.7). The calculated OR for the combined genotype was 13.4 (2.92-97.7) for CYP1B1*2/*2 and GSTT1*2/*2, and 24.1 (9.36-70.5) for the combination of CYP1B1*2/*2 and GSTT1-expressors. The impact of the polymorphic variants of the CYP1B1 gene on HNSCC risk is reflected by the strong association with the frequency of somatic mutations of the p53 gene. Smokers with susceptible genotype CYP1B1*2/*2 were 20 times more likely to show evidence of p53 mutations than were those with CYP1B1 wild type. Combined genotype analysis of CYP1B1 and GSTM1 or GSTT1 revealed interactive effects on the occurrence of p53 gene mutations. The results of the present study indicate that polymorphic variants of CYP1B1 relate significantly to the individual susceptibility of smokers to HNSCC.
Resumo:
Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu (CYP1B1*3) and Asn453Ser (CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.
Resumo:
Head and neck squamous cell carcinoma (HNSCC) accounts for a bulk of the oral and laryngeal cancers, the majority (70%) of which are associated with smoking and excessive drinking, major known risk factors for the development of HNSCC. In contrast to reports that suggest an inverse relationship between smoking and global DNA CpG methylation, hypermethylation of promoters of a number of genes was detected in saliva collected from patients with HNSCC. Using a sensitive methylation-specific polymerase chain reaction (MSP) assay to determine specific methylation events in the promoters of RASSF1A, DAPK1, and p16 genes, we demonstrate that we can detect tumor presence with an overall accuracy of 81% in the DNA isolated from saliva of patients with HNSCC (n = 143) when compared with the DNA isolated from the saliva of healthy nonsmoker controls (n = 31). The specificity for this MSP panel was 87% and the sensitivity was 80%(with a Fisher exact test P < .0001). In addition, the test panel performed extremely well in the detection of the early stages of HNSCCs, with a sensitivity of 94% and a specificity of 87%, and a high. concordance value of 0.8, indicating an excellent overall agreement between the presence of HNSCC and a positive MSP panel result. In conclusion, we demonstrate that the promoter methylation of RASSF1A, DAPK1, and p16 MSP panel is useful in detecting hypermethylation events in a noninvasive manner in patients with HNSCC.
Resumo:
Solid-extracellular fluid interaction is believed to play an important role in the strain-rate dependent mechanical behaviors of shoulder articular cartilages. It is believed that the kangaroo shoulder joint is anatomically and biomechanically similar to human shoulder joint and it is easy to get in Australia. Therefore, the kangaroo humeral head cartilage was used as the suitable tissue for the study in this paper. Indentation tests from quasi-static (10-4/sec) to moderately high strain-rate (10-2/sec) on kangaroo humeral head cartilage tissues were conduced to investigate the strain-rate dependent behaviors. A finite element (FE) model was then developed, in which cartilage was conceptualized as a porous solid matrix filled with incompressible fluids. In this model, the solid matrix was modeled as an isotropic hyperelastic material and the percolating fluid follows Darcy’s law. Using inverse FE procedure, the constitutive parameters related to stiffness, compressibility of the solid matrix and permeability were obtained from the experimental results. The effect of solid-extracellular fluid interaction and drag force (the resistance to fluid movement) on strain-rate dependent behavior was investigated by comparing the influence of constant, strain dependent and strain-rate dependent permeability on FE model prediction. The newly developed porohyperelastic cartilage model with the inclusion of strain-rate dependent permeability was found to be able to predict the strain-rate dependent behaviors of cartilages.
Resumo:
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cause of cancer mortality in the world and the 5th most commonly occurring cancer. Tobacco smoking, alcohol consumption and human papilloma virus (HPV) infections have been associated with the occurrence of HNSCC. Despite advances that have been made in HNSCC treatment, smoking-associated HNSCC patients still exhibit a poor 5 year survival rate (30-50 %) and a concomitant poor quality of life. The major clinical challenge to date lies in the early detection of dysplastic lesions,which can progress to malignancy. In addition, there are currently no tools available to monitor HNSCC patients for early stages of local recurrences or distant metastases. In the recent past, micro-RNAs (miRNA) have been assessed for their role in cancer initiation and progression, including HNSCC. It is now well-established that deregulation of these single stranded, small non-coding, 19-25 nt RNAs can e.g. enhance the expression of oncogenes or subdue the expression of tumor suppressor genes. The aims of this review are three-fold: first to retrieve from the literature miRNAs that have specifically been associated with HNSCC, second to group these miRNAs into those regulating tumor initiation, progression and metastasis, and third to discern miRNAs related to smoking-associated HNSCC versus HPV-associated HNSCC development. This review gives an overview on the miRNAs regulating the development of head and neck cancers. The ultimate establishment of miRNA expression profiles that are HNSCC specific, and miRNAs that orchestrate altered gene and protein expression levels in HNSCC, could pave the way for a better understanding of the mechanism underlying its pathogenesis and the development of novel, targeted therapies.
Resumo:
Head and neck cancers (HNCs) represent a significant and ever-growing burden to the modern society, mainly due to the lack of early diagnostic methods. A significant number of HNCs is often associated with drinking, smoking, chewing beetle nut, and human papilloma virus (HPV) infections. We have analyzed DNA methylation patterns in tumor and normal tissue samples collected from head and neck squamous cell carcinoma (HNSCC) patients who were smokers. We have identified novel methylation sites in the promoter of the mediator complex subunit 15 (MED15/PCQAP) gene (encoing a co-factor important for regulation of transcription initiation for promoters of many genes), hypermethylated specifically in tumor cells. Two clusters of CpG dinucleotides methylated in tumors, but not in normal tissue from the same patients, were identified. These CpG methylation events in saliva samples were further validated in a separate cohort of HNSCC patients (who developed cancer due to smoking or HPV infections) and healthy controls using methylation-specific PCR (MSP). We used saliva as a biological medium because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option for large-scale screening studies. The methylation levels for the two identified CpG clusters were significantly different between the saliva samples collected from healthy controls and HNSCC individuals (Welch's t-test returning P, 0.05 and Mann-Whitney test P, 0.01 for both). The developed MSP assays also provided a good discriminative ability with AUC values of 0.70 (P, 0.01) and 0.63 (P, 0.05). The identified novel CpG methylation sites may serve as potential non-invasive biomarkers for detecting HNSCC. © the authors.
Resumo:
Background MicroRNAs (miRNAs) are known to play an important role in cancer development by post-transcriptionally affecting the expression of critical genes. The aims of this study were two-fold: (i) to develop a robust method to isolate miRNAs from small volumes of saliva and (ii) to develop a panel of saliva-based diagnostic biomarkers for the detection of head and neck squamous cell carcinoma (HNSCC). Methods Five differentially expressed miRNAs were selected from miScript™ miRNA microarray data generated using saliva from five HNSCC patients and five healthy controls. Their differential expression was subsequently confirmed by RT-qPCR using saliva samples from healthy controls (n = 56) and HNSCC patients (n = 56). These samples were divided into two different cohorts, i.e., a first confirmatory cohort (n = 21) and a second independent validation cohort (n = 35), to narrow down the miRNA diagnostic panel to three miRNAs: miR-9, miR-134 and miR-191. This diagnostic panel was independently validated using HNSCC miRNA expression data from The Cancer Genome Atlas (TCGA), encompassing 334 tumours and 39 adjacent normal tissues. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic capacity of the panel. Results On average 60 ng/μL miRNA was isolated from 200 μL of saliva. Overall a good correlation was observed between the microarray data and the RT-qPCR data. We found that miR-9 (P <0.0001), miR-134 (P <0.0001) and miR-191 (P <0.001) were differentially expressed between saliva from HNSCC patients and healthy controls, and that these miRNAs provided a good discriminative capacity with area under the curve (AUC) values of 0.85 (P <0.0001), 0.74 (P < 0.001) and 0.98 (P < 0.0001), respectively. In addition, we found that the salivary miRNA data showed a good correlation with the TCGA miRNA data, thereby providing an independent validation. Conclusions We show that we have developed a reliable method to isolate miRNAs from small volumes of saliva, and that the saliva-derived miRNAs miR-9, miR-134 and miR-191 may serve as novel biomarkers to reliably detect HNSCC. © 2014 International Society for Cellular Oncology.
Resumo:
Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (approx 400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multi-player nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.
Resumo:
To the trained-eye, experts can often identify a team based on their unique style of play due to their movement, passing and interactions. In this paper, we present a method which can accurately determine the identity of a team from spatiotemporal player tracking data. We do this by utilizing a formation descriptor which is found by minimizing the entropy of role-specific occupancy maps. We show how our approach is significantly better at identifying different teams compared to standard measures (i.e., shots, passes etc.). We demonstrate the utility of our approach using an entire season of Prozone player tracking data from a top-tier professional soccer league.
Resumo:
Partial shading and rapidly changing irradiance conditions significantly impact on the performance of photovoltaic (PV) systems. These impacts are particularly severe in tropical regions where the climatic conditions result in very large and rapid changes in irradiance. In this paper, a hybrid maximum power point (MPP) tracking (MPPT) technique for PV systems operating under partially shaded conditions witapid irradiance change is proposed. It combines a conventional MPPT and an artificial neural network (ANN)-based MPPT. A low cost method is proposed to predict the global MPP region when expensive irradiance sensors are not available or are not justifiable for cost reasons. It samples the operating point on the stairs of I–V curve and uses a combination of the measured current value at each stair to predict the global MPP region. The conventional MPPT is then used to search within the classified region to get the global MPP. The effectiveness of the proposed MPPT is demonstrated using both simulations and an experimental setup. Experimental comparisons with four existing MPPTs are performed. The results show that the proposed MPPT produces more energy than the other techniques and can effectively track the global MPP with a fast tracking speed under various shading patterns.
Resumo:
BACKGROUND: Head-of-bed elevation (HOBE) has been shown to assist in reducing respiratory complications associated with mechanical ventilation; however, there is minimal research describing changes in end-expiratory lung volume. This study aims to investigate changes in end-expiratory lung volume in a supine position and 2 levels of HOBE. METHODS: Twenty postoperative cardiac surgery subjects were examined using electrical impedance tomography. End-expiratory lung impedance (EELI) was recorded as a surrogate measurement of end-expiratory lung volume in a supine position and at 20° and then 30°. RESULTS: Significant increases in end-expiratory lung volume were seen at both 20° and 30° HOBE in all lung regions, except the anterior, with the largest changes from baseline (supine) seen at 30°. From baseline to 30° HOBE, global EELI increased by 1,327 impedance units (95% CI 1,080–1,573, P < .001). EELI increased by 1,007 units (95% CI 880–1,134, P < .001) in the left lung region and by 320 impedance units (95% CI 188–451, P < .001) in the right lung. Posterior increases of 1,544 impedance units (95% CI 1,405–1,682, P < .001) were also seen. EELI decreased anteriorly, with the largest decreases occurring at 30° (−335 impedance units, 95% CI −486 to −183, P < .001). CONCLUSIONS: HOBE significantly increases global and regional end-expiratory lung volume; therefore, unless contraindicated, all mechanically ventilated patients should be positioned with HOBE.
Resumo:
We contribute an empirically derived noise model for the Kinect sensor. We systematically measure both lateral and axial noise distributions, as a function of both distance and angle of the Kinect to an observed surface. The derived noise model can be used to filter Kinect depth maps for a variety of applications. Our second contribution applies our derived noise model to the KinectFusion system to extend filtering, volumetric fusion, and pose estimation within the pipeline. Qualitative results show our method allows reconstruction of finer details and the ability to reconstruct smaller objects and thinner surfaces. Quantitative results also show our method improves pose estimation accuracy. © 2012 IEEE.
Resumo:
Three thousand liters of water were infiltrated from a 4 m diameter pond to track flow and transport inside fractured carbonates with 20-40 % porosity. Sixteen time-lapse 3D Ground Penetrating Radar (GPR) surveys with repetition intervals between 2 hrs and 5 days monitored the spreading of the water bulb in the subsurface. Based on local travel time shifts between repeated GPR survey pairs, localized changes of volumetric water content can be related to the processes of wetting, saturation and drainage. Deformation bands consisting of thin sub vertical sheets of crushed grains reduce the magnitude of water content changes but enhance flow in sheet parallel direction. This causes an earlier break through across a stratigraphic boundary compared to porous limestone without deformation bands. This experiment shows how time-lapse 3D GPR or 4D GPR can non-invasively track ongoing flow processes in rock-volumes of over 100 m3.